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Automatic code generation may be defined as the creation of code from a higher

level specification [BAL85]. The specification should have the property of being easier to

create, understand, and maintain than the code generated from it. Ideally, the specification

should be non-procedural, resemble documentation rather than detailed logic, and be

comprehensible by both the customer and developer. Graphical specifications of systems

are more quickly understood than their corresponding textual specifications, and many of

the recent approaches to automatic code generation are based, in part, on graphical

presentation. Most of these approaches use variants of data flow diagrams and hierarchical

charts made popular by Yourdon, Constantine, Gane, and Sarson (e.g. IORL [SIE85] and

PAMELA [CRA86] ). Graphical representations (GRs) of software represent a major thrust

in computer-aided software engineering (CASE) tools in general. While the benefits of

CASE tools are still being debated, there is solid evidence of a move in the direction of

these graphically oriented tools. _

The research reported herein describes the first phase of a three-phase effort to

develop a new graphically oriented specification language which will facilitate the reverse

engineering of Ada source code into _GRs as well as the automatic generation of Ada source

code, Figure 1 shows a simplified view of the three phases of GRASP/Ada (Graphical

Representations for Algorithms, Structure, and Processes for Ada) with respect to three

basic classes of GRs. Phase i concentrated on the derivation of an algorithmic diagram, the

control structure diagram (CSD) [CRO88a] from Ada source code or Ada PDL. Phase II

includes the generation of architectural and system level diagrams such as structure charts

and data flow diagrams and should result in a requirements specification for a graphically

oriented language able to support automatic code generation. Phase I II will concentrate on

the development of a prototype to demonstrate the feasibility of this new specification

language.
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Figure 1. The Planned Three Year GRASP/Ada Research and Development Schedule.
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•While generic structure charts and data flow diagrams are widely used graphical

tools, the CSD is representative of a new group of graphical representations for algorithms

that can co-exist with source code or PDL. Figure 2(a) contains an example of an Ada task

body and Figure 2(b) shows the corresponding CSD. CSD constructs are more fully

described in Section 3.3.

Phase I of GRASP/Ada was intended to provide a theoretical, as well as practical,

foundation for the project. It included a survey of previous and current work in the area of

automatic code generation, a survey of current methodologies for the design of Ada

software, and a survey of graphical representations for systems and algorithms. Phase I

was focused on the general problem of graphical representation of several integrated views

of algorithms, structure, and processes.

It was mutually agreed between NASA representatives and the researchers that the

f'trst phase should concentrate on the complementary problem of generating graphical

representations from Ada source code. The justification for this approach was multifaceted.

The primary reason is that addressing the generation of GRs from Ada source code

provided key insights into the problem of generating code from graphically oriented

specifications, the overall goal of the project. Furthermore, since Ada has the potential to

become a widely accepted and utilized standard, it provides a furn base from which abstract

graphical models can be synthesized.
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package CHAPTERONE is

task CONTROLLER is

entry REQUEST(PRIORITY) (D:DATA);

end;

end CHAPTERONE;

package body CHAPTERONE is

task body CONTROLLER is

begin

loop
for P in PRIORITY loop

select

accept REQUEST(P) (D:DATA) do

ACTION(D);

end;

exit;

else-

null;

end select;

end loop;

end loop;
end CONTROLLER;

end CHAPTERONE;

L_

W
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Figure 2(a). Sample Ada Source Code.

from Barnes, J.G.P., 1984, Programmin$ in Ada,

2nd Edition, Addison-Wesley Publishers Limited,

Reading, Massachusetts.
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)ackage CHAPTERONE is

task CONTROLLER is

entry REQUEST(PRIORITY) (D:DATA);

end;

9nd CHAPTERONE;

Ipackage body CHAPTERONE is

task body CONTROLLER is

begin

loop

for P in PRIORITY loop
select

"T

!_/.cceptREQ EST  ,

h ACTION(D);

Lend;
--exit;

else

i --null;

(D :DATA) do

[ end select;

end loop;

enl loop;

end CONTROLLER;

end CHAPTERONE;

Figure 2(5). Sample Ada Source Code Overlaid

with Control Structure Diagram.
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Second, the GRASP/Ada CSD generator has the potential to increase the

comprehensibility of Ada source code and/or Ada PDL, which may have wide ranging

implications for the design, implementation, and maintenance of software written in Ada.

In particular, many designers and implementors will be working with Ada or Ada PDL and

thus can utilize the tool to provide GRs which are more easily understood than textual

equivalents. Understanding between customer and designer, designer and implementor, as

:well as among individual members of each group, is critical to the success of any project.

Maintenance personnel tend to deal with large amounts of foreign code which must be read

and understood prior to any modification. Graphical aids which can increase the efficiency

of this understanding can reduce the overall cost of maintenance.

Finally, software verification, which is essential throughout design,

implementation, and maintenance, can benefit from any useful aid to code reading. Code

reading has been found to provide the greatest error detection capability at the lowest cost

as compared to functional testing and structural testing [NAS88]. While the actual increased

efficiency of understanding (i.e. fewer errors, reduced time) afforded by GRs seems

intuitive, this project will also address the empirical evaluation of the proposed tool set.

The remainder of this report is organized as follows. Section 2 provides a survey of

the literature in the areas of automatic code generation, design methods for Ada, graphical

representation of algorithms, and reverse engineering. Section 3 describes the requirements

for Phase I of GRASP/Ada. Section 4 describes the design and implementation of the

prototype tool. Section 5 presents some examples of Ada source code that have been

processed by the CSD generator. Finally, Section 6 describes future directions for this

research. The appendices includes the results of a preliminary empirical evaluation of

graphical representations of algorithms and copies of publications produced from the

research.

m_
W
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Several areas of computing were identified as relevant to the current research. The

results obtained in automatic code generation were reviewed. Current design methods were

explored to identify the many ways in which software engineers specify software, and to

see the mechanisms by which these specifications are converted into working source level

software. Procedural and architectural graphical representations were examined to see how

large software programs may be viewed graphically. Finally, the topic of reverse

engineering was explored to see how others are approaching the problem of converting

source code into higher level specifications, both graphical and textual. A complete list of

the software engineering tools and environments surveyed is provided in Figure 3.

2.1 Automatic Code Generation

i

The term "automatic code generation" has numerous meanings in the literature.

Balzer [BAL85], in his survey of the work done in the field of automatic programming,

reiterates the traditional definition:

"Automatic programming has traditionally been viewed as a compilation problem in

which a formal specification is compiled into an implementation."

He then goes on to provide two elaborations of these definitions. The first involves

"...the addition of an optimization that can be automatically compiled and the

creation of a specification language which allows the corresponding implementation

issue to be suppressed from specifications."

w 7



Surveyed Tools

Z

m

w

7-

w

Name Class Gravhical? Generates Date Reference

PSL/PSA SD /q3 •1977 Teichroew, et.al.

REVS/RSL SD YES 1977 Alford
SA SD YES 1977 Ross
ARGUS SD YES 1983 Stucki
TRIAD SD NO 1983 Kuo,eLal.
HIDOC RE,M YES 1984 Harada, et.al.
SLAN-4 SL NO 1984 Beichter, et.al.
ANNA SL NO Ada 1985 l.,uckham,et.al.
Descartes SL NO 1985 Urban. et.al.
Gandalf SD NO 1985 Habermann, et.al.
"GIST SD NO 1985 Balzer

IORI./rAGS SD YES Ada 1985 Sievert, Mizell
KBErnaes SD 143 1985 Waters
Larch Family SL NO * 1985 Guttag, et.al.
PhiNIX SD NO 1985 Barstow
PROMPTER RE 1'40 1985 Fukunaga
TSL SL NO Ada 1985 Helmbold, et.al.

PAISLey SL NO 1986 Zave, Schell
PAbfl_._AdaGRAPH SD YES Ada 1986 Crawford, etaL
SPC/SCHEMACODE SD, SL YES FORTRAN, C, 1986 Robillaxd

Pascal, dBASE IIL
OOBOL

Transformation Schema SD YES 1986 Ward

GRASP/GT SL YES Aria 1987 Morrison
WLISP RE YES 1987 Fischer, et.al.
D* RE YES 1988 Blaze, Cameron
GETS SD YES 1988 Arthur
GRAPES/86 & GRAPES SL YES 1988 Wagner
KDA EV NO 1988 Sharp
TOMALOGIC RE NO 1988 Lemer
VIC SD,M YES C 1988 Raj'lich, et.al.

Key:
SD - Software Development, RE - Reverse Engineering, SL - Specification Language, M - Maintenance,
EV - Evaluation

m
m

Figure 3. Surveyed Software Engineering Tools and Environments.

8
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In the second def'mition

"... a desired specification language is adopted, and the gap between it and the level

that can be automatically compiled is bridged interactively."

Balzer views these approaches as complementary, with the second approach elaborating on

the concepts set forth in the fLrSt. He believes that automatic programming is not entirely

possible, but will involve an interactive step in which the program generator resolves

ambiguities and patches incomplete specifications by interrogating the user.

Rich and Waters [RIC88] set forth what they term the "cocktail party" def'mition for

automatic programming:

"There will be no more programming. The end user, who only needs to know

about the application domain, will write a brief requirement for what is wanted. The

automatic programming system, which only needs to know about programming,

will produce an efficient program satisfying the requirement. Automatic

programming systems will have three key features: They will be end-user oriented,

communicating directly with end users; they will be general purpose, working as

well in one domain as in another; and they will be fully automatic, requiring no

human assistance."

They then proceed to point out several problems with this definition. First, they argue that

automatic programming systems cannot be domain-independent, but must have some

knowledge about the particular field of programs they are expected to generate. Second,

they argue that fully automatic programming is not possible, because it would require that

the automatic programmirig system have a knowledge base for every application domain.

Third, they argue that requirements cannot possibly be fully specified, and that some

degree of interactivity is necessary for automated code generation.

Rich and Waters note that current automatic programming methods fall into four

categories: (1) procedural methods, which typically use high level and very high level

languages; (2) dcductiv¢ methods, which create programs after fh'st finding "a constructive

proof of the (program) specification's satisfiability"; (3) transformational methods, which

9
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take very high-level language specifications and translate them into working programs via

successions of transformations; and (4) inspection methods, which detect "motifs" or

"cliches" in a problem and match them to existing implementations or implementation

templates.

An interesting observation made by Rich and Waters states that "(t)o date,

essentially all commercialization of automatic programming research has been via the very

high level language approach. However, we will soon begin to see the first

commercialization of research on the assistant approach."

Barstow [BRS85] discusses "automatic programming systems" and, in particular,

his PhiNIX project for automatically generating programs for use in application areas

involving oil well logging. He defines such a system as:

"... allow(ing) a computafionally naive user to describe problems using the natural

terms and concepts of a domain with informality, imprecision, and omission of

details. An automatic programming system produces programs that run on real data

to effect useful computations and that are reliable and efficient enough for routine

use."

2.1.1 Non-Graphical Specification Languages

W

=__=

r

ll=__

A popular method of achieving automated code generation is through the use of a

specification language. A specification language is a "formal way[s] of representing [a]

specification[s] with high precision" [MAR86], that "provides facilities for explaining a

program" [LUC85]. Beichter, Herzog, and Petzsch [BEI84] state that "the objective of

these languages is to prevent design errors.., at an early stage of software development."

Jones [JON80] states that "it is the role of a specification to record precisely what the

function of a system is." Abrial [ABR80] agrees, saying "the formal specification of a

problem is provided by a strict statement of its conten'.s written in a non-natural language."

Meyer [MEY85] expounds on these definitions, saying that "their underlying concepts are,

10
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from scratch

evolutionary

extended."

for the most pan, well-known mathematical notions like sets, functions, and sequences."

Kemmerer [KEM85] agrees, stating that a high level formal specification of a system

"gives a precise mathematical description of the behavior of the system omitting all

implementation details," accompanied by "zero or more less abstract specifications which

implement the next higher level specification with a more detailed level of specification."

However, not everyone agrees that specifications should be isolated from their

implementations. Indeed, Guttag, Homing, and Wing [GUT85] have done research on a

two-tiered approach to software specification in which the lower tier is tailored to specific

programming languages. Luckham and Henke [LUC85] consider high level languages that

have been extended with proper annotations to be specification languages; certainly these

cannot be independent of implementation.

Luckham and Henke also state that there are two different approaches to be taken in

designing specification languages. One is the "fresh start," where the language is designed

and based on a sound mathematical background. The other is "the

approach, whereby an existing high-level programming language is

Alford [ALF77] reiterated ten desirable properties of a software specification that

were summarized by Bell and Thayer:

• Completeness

• Correctness

• Unambiguity

• Traceability

• Modularity

• Consistancy

• Testability

• Design Freedom

• Communicability

• Automatability

w
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Sievert and Mizell [SIE85] identified several goals that were desired in IORL

(Input/Output Requirements Language), including:

• enforcement of a rigorous methodology for system development

• applicability to all systems, not just computer systems

• ease of use (systems should be difficult to misuse)

• the capability to express system performance characteristics and algorithms

using common mathematical notation

• the use of graphical symbols derived from general systems theory

Guttag, Homing, and Wing [GUT85] pointed out several desirable features that are

embodied in their Larch family of specification languages. Some of these are:

• Composability

• Emphasis on presentation

• Suitability for integrated interactive tools

• Semantic checking

• Localized programming language dependencies

Meyer [MEY85], who assisted in the creation of an unnamed specification language

[ABR80], addresses the issue of software reusability as an important consideration: "An

essential requirement of a good specification is that it should favor reuse of previously

written elements of specifications."

Luckham and Henke [LUC85], the creators of ANNA (a specification language for

Ada) stated that their system:

• should be easy for an Ada programmer to learn and use

• should give the programmer the freedom to specify and annotate as much

or as little as he wants and needs

• should encourage the development of new applications of formal

specifications

12
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Martin [MAR85a] listed a large number of desirable properties of a specification

language. He believes that a good specification language:

• improves conceptual clarity

• should be easy to learn and use

• should be computable

• should be rigorous and mathematically based

• should use graphic techniques that are easy to draw and remember

• should employ a user-friendly computerized graphics tool for building,

changing, and inspecting the design

• should employ an integrated top-down or bottom-up design approach

• should indicate when a specification is complete

• should employ an evolving library of subroutines, programs, and all the

constructs the language employs

• should link automatically to data-base tools, including a dictionary

• should guarantee interface consistency

• should be easy to change

Meyer [MEY85] stated seven problem areas, which he termed the "seven sins of the

specifier," that should be addressed by a specification language. These are:

• Noise • Silence

• Overspecification • Contradiction

• Ambiguity • Forward reference

• Wishful thinking

Balzer [BAL83] identifies several features which should be provided by support

environments for specification languages. A support environment should allow the

software engineer to enter a specification concisely, because "the amount of information

that must be specified for the system to correctly process the problem must be reduced."

Balzer also states that "a mechanism is required for the modification of specifications that

have been previously entered." Finally, Balzer says that a support environment, in addition

13
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to generating a source program, should provide "a mechanism for transforming it into an

efficient one."

Case [CAS85] identifies a set of tools that could be provided by support

environments for specification languages. Some of these tools are:

• an interactive, "friendly" user-interface

• graphics/word processing editors

• project management tools

• design dictionaries and design analyzers

One of the most rigorous forms of specification language is the formal specification

language. Formal specification languages have precise semantics and are based upon

established mathematical principles [JON80, MEY85]. These languages are used to

describe what software should do, and not how it is to be done. In fact, Jones suggests that

formal specification languages should not be extended to handle algorithmic specification

[JON80]. Formal (implicit) specifications are generally developed as a set of axioms and a

set of functions. The functions are described using a type clause, which shows the data

types of the inputs and outputs, a pre-eondition, which specifies any assumptions which

must hold on the input, and a post-condition, which specifies the required relation between

the input and the output. The functions are used to define operations which carry a program

from one state to another. The chief advantage of formal specification languages is that they

are very precise and lend themselves well to formal proofs and verification.

One approach to formal specification is given by Jones [JON80]: the "rigorous

approach." Jones approaches the problem of formal specification by using strict

mathematical notation to define a kernel of operations which can be used to define the

functions to be performed by the software.

SLAN-4 is a formal specification language which bears more resemblance to

conventional programming languages than to mathematics. Developed by Beichter, et. al.

[BEI84], it introduces the concept of modules (analogous to the functions used by Jones

[JON80]) and classes (which are collections of modules accompanied by some declarations

14
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common to the modules). Abstract data types are described algebraically, separating their

specification from implementation details. However, SLAN-4 does allow pseudocode to be

used to specify low-level design details.

A Software Blueprint is a formalized program specification developed by Chu

[CHUB2] of the University of Maryland. The typical software blueprint consists of three

components: a level A document, which describes a modular decomposition of the system;

a level B document, which sketches the control and data flow in each of the modules; and a

level C document, which details precisely how to implement the program. The blueprints

are written using a combination of SDL-1 (Chu's Software Design Language) and natural

language for the level A and B documents, and SDL-1 alone for the level C documents. It

is interesting to note that SDL incorporates features such as data structures (trees, queues,

lists, etc.) and timing structures (semaphores and switches) as part of the language.

ANNA (ANNotated Ada) is a specification language designed by Luckham and

Henke [LUC85] to be used as an extension to Ada. The extensions, called annotations, are

embedded in the Ada program as comments and are distinguished from ordinary comments

(which begin with "-" in Ada) by the addition of a third character ("--I", or "--:"). Thus,

an ANNA specification is simply an Ada program with formalized comments. Quantified

expressions are made available to simplify the writing of specifications, and axioms may be

described using an Ada-like notation. In addition, package annotations are used to

introduce the concepts of package states, which are modified by the operations contained in

the package.

GIST, a specification language which formalizes the constructs used in natural

language, has been used with some success by Balzer [BAL85]. The language was

employed in developing several real applications and has been chosen as the basis for a

software engineering environment being developed at USC. One problem that has been

noted is the poor readability of a final GIST specification. USC and TRW are currently

working on a paraphraser program to translate GIST specifications into natural language.

15
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PSL/PSA (Problem Statement Language and Problem Statement Analyzer) is a

specification language and accompanying requirements analyzer developed by Teichroew

and Hershey [TEI77]. System specifications in PSL have eight major components:

• System input/output flow

• Data structure

• System size and volume

• System properties

• System structure

• Data derivation

• System dynamics

• Project management

These components are filled in by the analyst using a predefined format so that the PSA can

syntactically analyze the specification. The specification information is collected in a

database, from which various analytical reports can be produced. When all of the

requirements have been entered, the system gathers the information and produces final

specification documents for the system.

Hevis [I-IEV88] describes a subset of specification languages known as executable

specification languages. He defines an executable specification language as "a language

which has a natural language syntax with pictorial representation, and the added capability

of 3GL code generation." Hevis identifies four important objectives for an executable

specification language:

• "to provide systems designers or domain experts which have no programming

experience, with the means to write a formal and complete specification of their problem

with a minimum of training on the language itself."

° "to be able to develop a system, with a minimum knowledge of the target software

and hardware platforms."

• to be able to define problems easily by using visual representations.

• "to be able to execute and test those specifications at the design stage, with an

incomplete definition of the problem."

PAISLey is an executable specification language for describing concurrent digital

systems [ZAV86]. It uses the technique of functional decomposition, and describes any

system as a set of asynchronous processes. "Exchange functions" are used to specify the

16
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interactions between processes. One of the more interesting features of PAISLey is that it

can always execute a specification, whether it is complete or incomplete.

Urban, Urban and Dominick [URB85] used the Descartes executable specification

language to describe the MADAM information and storage retrieval system at the

University of Southwestern Louisiana. Descartes, based upon Hoare's data structuring

methods, utilizes operations such as direct product and recursion to break a program's

input into parts and then construct an output from those parts. In this respect, Descartes

bears a striking resemblance to the data structure-oriented approaches of Warnier [WRN74,

WRN81] and Jackson [JAC83].

2.1.2. Graphical Specification Languages

The StructuredAnalysis and Design Technique (SADT), developed by Ross, et.al.

[ROS77], isa graphicallanguage forthe specificationof systems. Using SADT, a system

isdecomposed intoa setof processes,each representedas textinsidea box. Inputsand

outputsto theprocess are shown as labeledarrows enteringand leavingthe box on the Icft

and rightsides,respectively.Control dataisshown using a labeledarrow enteringthetop

of the process box. The algorithmicmechanism controllingthe process islabelcdon an

arrow enteringthe bottom of the proccss box. Typically,theprocess boxes are connected

to form a "waterfall" configuration. Each SADT diagram is accompanied by an information

sheet for project managers.

SREM (Software Requirements Engineering Methodology) was developed by

Alford [ALF77] for the specification of large, real-time systems. It utilizes a Requirements

Statement Language (RSL), and a Requirements Engineering and Validation System

(REVS) which analyzes the RSL statements. SREM centers on the concept of a

requirements network (R-Net), a structure useful in describing the responses to a given

input or stimulus. Processes on the R-Net can be described using predefined RSL

elements, or new RSL elements can be created by the analyst. The SREM methodology is

17
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notable as being one of the few to be applied to large, practical problems.

Many recent specification languages are developed concurrently with specific

support environments which often make use of graphical representations of specifications

and query users for additional information during development. Four of these languages

and environments are described here: USE.IT and 001 with their environments on the DEC

VAX; PAMELA with the AdaGRAPH environment on the IBM PC; IORL with the TAGS

environment on the Apollo Workstation; and GRASP/GT with its GRASP environment on

the Apple Macintosh.

Hamilton Technologies, Inc., has developed an integrated hierarchical, functional

and object-oriented modeling approach collectively called 001TM technology. The 001

technology is based, in part, on USE.IT developed by Higher Order Software (HOS)

[HAM79]. In 001, a system is defmed in terms of a single control map which integrates

both function control maps (FMaps) and type control maps (TMaps), where an FMap

defines a hierarchy of functions and a TMap defines a hierarchy of abstract types. The

underlying specification language for these maps is 001 AXES, which is based on a set of

control axioms derived from empirical data gathered during the development and operation

of the existence of a universal set of objects. The leaves of the maps represent primitives

implemented in a language for a particular native computer environment. When a system

specified in 001 AXES is processed by the "Resource Allocation Tool," the result is a

complete system in the source language of the primitives.

PAMELA (Process Abstraction Method for Embedded Large Applications) is a

methodology developed by Cherry [CHE88] and supported by the AdaGRA15H

environment on the IBM PC. A specification is written in PAMELA by first describing a

system as a collection of flow diagrams. Next, the analyst is prompted to answer certain

questions about each of the processes in the flow diagrams, resulting in corresponding

annotations to the diagrams. Finally, the analyst takes the code generated from the flow

diagrams and fills it in to form completed Ada programs. It is interesting to note that the

"automatic code generation" provided by PAMELA falls mainly into the area of providing

18
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correctly specified modules and communications between these modules. Generating

procedural code is left to the analyst, although the AdaGRAPH environment does provide

facilities for simplifying this.

IORL (Input/Output Requirements Language) is a high-level requirements language

developed for the design of real-time embedded systems with the TAGS (Technology for

the Automated Generation of Systems) methodology [SIE85]. TAGS embodies the

hierarchical top-down development of a system, and relies upon graphical representations

to present control flow within a process and data flow among different processes executing

simultaneously. A system may be viewed at any time from a number of levels: from a very

high level showing an overview of the entire system, from a very low level showing the

IORL primitives that make up a process, or from any level in between. The latest release of

IORL utilizes an icon-oriented interface for the easy creation of IORL diagrams, and some

errors fi'om earlier versions have been corrected. Currently, Teledyne Brown Engineering

is working on a "Simulation Compiler" which will significantly enhance the TAGS

development environment.

In true Ada form, the acronym GRASP has been "overloaded." GRASP/GT

(GRaphical Approach to the Specification of Programs/Graphics and Text) is an executable

specification language designed by Kelly Morrison of Auburn University for specifying

Ada programs employing tasking [MOR87a, MOR87b, MOR88]. A GRASP/GT

specification may be viewed in two ways: as a graphical GRASP/G document utilizing both

architectural and procedural graphical representations, or as a textual GRASP/T document

which outlines the specification in a PDL-like listing. The GRASP/G diagrams for

architectural specification are derived from the data flow diagrams promoted by Yourdon

[YOU78], and Gane and Sarson [GAN79]. The GRASP/G diagrams for procedural

specification are based on the Warnier-Orr diagrams established by J. D. Warnier

[WRN74, WRN81] and modified by others [ORR77, BRN84]. GRASP/GT currently runs

on the Apple Macintosh, although the GRASP/T translator is portable and is currently

available for the DEC VAX and IBM PC.
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Three categories of design method are presented in this section: (1) data

flow-oriented design, (2) data structure-oriented design, and (3) object-oriented design.

Each category has its particular area of emphasis in what Pressman [PRE87] calls the

.,information domain" and also in the type of design (i.e. architectural as opposed to

procedural) each undertakes. Several of the design methods discussed herein are a/so parts

of larger life-cycle methods which encompass complementary requirements analysis

methods. The following is a brief discussion of several design methods in the three

categories along with a comparison of the three general approaches with respect to

suitability for Ada-based software. Pressman [PRE87] provides a comprehensive

overview of several of the design methods presented.

2.2.1. Data Flow-Oriented Design

Data flow-oriented design was developed through the efforts of Yourdon,

Constantine, [YOU75], DeMarco [DEM79], and others [STE74, MYE78, YOU78,

GAN82] and is based on analysis of system data flow characteristics, aided by the

inclusion of the data flow diagram.

The data flow-oriented design espoused by Yourdon, Constantine, and DeMarco,

called Structured Design, is primarily an architectural method, converting data flow

specifications into structure charts. Structured Design offers no unique tools for procedural

design, although DeMarco [DEM79] does present a pseudocode-like notation for process

specification in the analysis stage. The construction of the structure chart is accomplished

by partitioning the data flow diagram and applying a mapping procedure to each of the

partitions. The partitioning is accomplished by analysis of the characteristics of the overall

data flow. Two types of flow are recognized. In transform flow, the overall data flow

follows a pattern of large input flow into a general transform area producing large output
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flow. In contrast, data flow may exhibit characteristics of a transaction, where one

particular data item determines the flow path subsequently followed. The topology of the

architectural structure differs according to the type of flow exhibited by the data flow

diagram. It is possible to have both types of flow in different areas of the same diagram.

In areas where transform flow is dominant, the mapping of such areas to an

architectural specification begins by defining the input flow areas, the general

transformation areas, and the output flow areas. For each of these areas, a control process

subordinate to a system controller is added to the structure chart. Subsequently, the

processes within the areas are added to their respective structure chart branches as modules.

As a rule, input and output processes closer to the transform area boundary have control

over those processes further from the transform.

In an area dominated by a transaction, however, the partitioning of the data flow

diagram is based on different criteria. Instead of a transform center, the heart of the

partition is the transaction center, a single process from which the different flow path

alternatives emanate. Also identified is the flow path through which the discriminating data

item arrives at the transaction center. The resulting structure chart has a branch

corresponding to the arrival path and also a dispatch branch, the latter controlling the

branches for each of the alternative paths. Note that the alternative paths and the arrival

path will have to be analyzed and structured individually as they will have distinctive flow

characteristics of their own.

The derivation of the complete system structure chart is followed by its refinement

to improve the strength of the modules comprising the chart. This refinement is the work

of the human designer and is based more on experience and intuition than on any

mechanical algorithm. Following refinement, each module in the final structure chart can

be specified using any number of detailed design techniques.

q
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2.2.2. Data Structure-Oriented Design

Data structure-oriented design is based on the premise that the composition of

software is directly related to the structure of the data with which the software is concerned.

Presented are two development methods with design techniques based on this premise:

Jackson System Development and Data Structured Systems Development.

Jackson System Development OSD) is a method concerned with the modeling of

real-world situations. It is a comprehensive method, covering the life cycle from

requirements analysis to implementation. Jackson [JAC83] divides the method into two

phases: specification and implementation. In JSD, there is no definitive design phase;

instead, design issues (especially pragmatic issues such as processor allotment and data

base construction) are handled in the implementation phase. Much of the JSD specification

phase, however, resembles the typical design phase as it determines a logical architecture

for processes and also a pseudocode-like description of the processes.

Cameron [CAM86] provides an overview of JSD specification. System

specification begins with the identification of relevant entities and the actions that may befall

them. From this set, a series of model processes are derived. Each model process is a

description of an entity in terms of the actions that befall it and the order in which such

actions occur; in other words, a description of the life cycle of a particular entity. The

model processes are depicted with Jackson diagrams, tree-like structures having added

notation to represent selection between alternate branches or repetition of a branch, as well

as for sequencing among sibling branches.

The set of model processes constitutes the heart of the system specification. In

order to communicate with the real world, utility processes for such tasks as input and

output must be developed and linked with the model processes. Cameron [CAM86]

describes the development of a JSD specification as being "middle-out", that is, starting

with the model processes (which do not communcate with each other), adding the utility

processes to the periphery, and linking with the model to produce a network specification.
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The linkage can occur in one of two modes: data stream communication and state vector

inspection. A data stream connection consists of a conceptually boundless queue of

messages from one process to another. A state vector is simply the collection of variables

local to a model process which relate the state of the modeled entity. This vector may be

examined (but not altered) by the utility processes. The final result of this phase of

specification is a series of independent processes (more precisely, process types) connected

via data stream queues or state vectors. Each process may be elaborated by its Jackson

diagram.

From the network specification, a structure chart may be derived. Cameron

[CAM86] describes a "knitting needle" technique for developing such a chart. In a network

specification, data streams can be directly connected to the outside environment in order to

supply utility processes with needed input. The technique involves conceptually threading

a needle through such data streams with the resulting topology representing the architecture

of the system (the needle itself may be considered the main process). Allowances may be

made for loops within the system and for timing requirements which call for buffering.

Another method in this category is one developed by On" [ORR81], based on the

work of Warnier [WRN74, WRN81]. This method, known as Data Structured Systems

Development (DSSD), is premised on the concept of "output-oriented" design; in other

words, the system should be developed solely on the basis of the required outputs. Like

JSD, DSSD encompasses requirements analysis as well as design. Like JSD, DSSD also

defines the functions and begins procedural studies of those functions in requirements

analysis. Many of the notations used in DSSD are based on the Warnier diagram (see

[WRN74, WRN81]) and its successor, the Wamier/Orr diagram [ORR81].

DSSD begins requirements analysis with definition of the application context which

defines the scope of the system in relation to the real-world environment in which it will

operate. The application context is determined through the use of entity diagrams which

show information flow among the relevant players in an organization. From these

diagrams, the entities comprising the actual system are determined, and in this way the
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domain of the system is bounded. System objectives are determined by examining and

ordering the data flow that crosses the newly defined system boundary. The ordering of

objectives is more fully defined through the use of the assembly-line diagram, a notation

based on the Warnier/Orr diagram altered to show distinct threads of data flow. From this

basis, an analysis of the procedural specifications of each of the functions defined from the

assembly-line diagram is conducted using the Warnier/Orr notation. After functional

requirements have been determined, the application results, or the outputs which justify the

system, are examined in detail. Eventually, this study will produce Warnier/Orr

representations of the system outputs; these representations will be the input to the design

phase of DSSD.

The objective of the design phase, according to Hansen (see [HAN83]) is to

produce a logical process structure from the Wamier/On" representations of outputs,

otherwise known as logical output structure. The mapping from the LOS to the LPS is

usually quite direct.

2.2.3. Object-Oriented Design

Object-oriented design is a design philosophy which has been seriously studied

only in the past few years. Booch [BOO86] provides an overview of the fundamental

concepts in this relatively new area. The most fundamental, of course, is that of the object,

which is simply a software manifestation of some real-world entity. A software system

designed in light of this philosophy will consist of several such objects, corresponding to

the actual objects in the problem domain. With each object is associated a group of

operations, or methods, which are performed on the object. In addition, software objects

have attributes, which serve as modifiers (adjectives) for the objects. As a real world

object can be a member of a larger grouping which has attributes common to each member,

so also can a software object be a member of a class and inherit the attributes and

operations from the more general class of which it is a member.
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An object (or object class) can be viewed from two perspectives. First, an object

has a implementation which contains the details of the object and its operations and yet

shields such details from the object's users, and (2) a specification, or the interface used by

other processes to invoke the operations provided by the object (and to create objects

belonging to the class). Note that in true object-oriented design the operations provided by

objects define the extent of what may be done with the object. Since the detailed structure

of the object is unknown to outside processes, such processes cannot exploit the object's

internal data structure in any way other than that allowed by the given operations. It is this

characteristic of object-oriented design which makes the objects, and the systems to which

they belong, more amenable to change.

An early OOD method was devised by Booch [-130083] based on a technique

proposed by Abbott [ABB83]. The basis for any OOD method is the identification of

relevant objects and operations from software requirements documentation. In this

method, objects, operations, and attributes are identified from an English description of the

proposed solution plan, known as an informal strategy. Next, the designer associates each

of the operations to exactly one object, based on which object's internal structure was

required for the operation to proceed. Dependency among the objects then is established;

object A depends on object B if object A uses any of the data types or operations in object

B's interface. The resulting overall dependency relationship constitutes the architectural

view of the system. The dependencies among the objects plus the interfaces of the objects

can be demonstrated using graphical notations specially created for OOD. Once the system

structure is established, the implementation details of each object and its operations are

defined. If the detailed design of any particular object reveals an underlying system of

constituent objects, then the entire method can be applied recursively to the solution

description for that object.

Pressman [PRE87] illustrates another method, developed by Cox and others

[COX86], which utilizes the OOD principles of class and inheritance, whereas Booch's

early method did not. In this method, object classes inherit operations and attributes, called
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instance variables,"from their more general ancestors. In addition, the more specific

classes have the ability to provide operations and attributes unique to them and even to

override operations and attributes inherited from the ancestors.

Another method, devised by Seidewitz and others at Goddard Space Flight Center

[SEI87], attempts to address some of the perceived inadequacies of Booch's early method.

The major disadvantage of the method seen by these researchers is that it did not offer any

special design notation for larger software systems. To alleviate this need, Seidewitz and

his team drew from previous work [RAJ85] to develop two hierarchical representations for

object-based software systems. The parent-child hierarchy (called composition hierarchy in

a later article [SEI88]) relates how an object can be composed of subordinate objects which

are unknown outside the domain of the encompassing object (this structure was indeed

recognized in [BOO83] although it was not explicitly named). The seniority hierarchy, on

the other hand, configures the system as layers of virtual machines [DLI68] consisting of

objects; the objects of each virtual machine layer may invoke the resources of objects within

their layers or from subordinate layers. This hierarchy differs from the parent-child

hierarchy in that subordinate objects may be known and directly exploited by multiple

superiors.

The development scheme of this method starts with a data flow diagram and the

identification of a central entity and support entities in a process known as abstraction

analysis [STA86]. Seidewitz and Stark [SEI87] adopt this approach in lieu of Botch and

Abbott's informal strategy. From this is devised a static diagram showing the entities and

the known control relationships between them. The entities and relationships in this

diagram are then translated into objects and dependencies, and virtual machine layers are

more f'uTnly established. Later developments [SEI88] have included the analysis of a

complete entity-relationship diagram, and have dubbed the method GOOD, for General

Object-Oriented Design.

In his later article, Botch [BOO86] adapts his method somewhat and appears to

address some of the inadequacies noted in [SEI87]. These alterations are duly noted in
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[SEI88]. Instead of using an English description of the problem, Booch, like Seidewitz

and Stark, derives the objects and operations from a data flow diagram, although not in the

exact manner as Seidewitz and Stark. Booch [BOO86] now describes the operations

associated with each object as being "suffered by" the object; the objects which would

invoke those operations are now spoken of as "requir[ing]" said operations. Objects are

now classified as (1) actors, objects which do not offer any operations and hence do not

suffer operations, (2) servers, objects which do not invoke the operations of other objects

but simply suffer invocation from others, and (3) agents, objects which both suffer

operations of their own and inflict invocations on other objects. With the information

about the relationships between operations and objects, dependency among the objects is

determined. Provisions are made for a layering approach with the addition of a notation for

subsystems, corresponding to the virtual machines of Dijkstra, Seidewitz, and Stark.

2.2.4. Applicability to Ada

A task confronting project managers is choosing a design approach suiiable for the

applications which they must oversee. Increasingly, applications have grown in sheer

magnitude and complexity; hence, the desire and the need to control complexity is growing

ever more acute. In addition, concurrency in the application domain is now seen as a

quality to exploit directly rather than simply to simulate or even to avoid. Ada was created

to serve these ends.

Presumably, all of the above methods can be applied to Ada-based software as the

language provides all of the necessary constructs for each of the approaches to succeed.

However, Ada provides a number of unique constructs which render object-oriented

approaches even more applicable. The package construct is the basis for objects in most of

the OOD methods discussed. [BOO83, BOO86] [SEI87, SEI88] The package specification

parallels the object specification in that it provides necessary data types and invocation

mechanisms for operations. The package body contains the details of the operations and
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the types and shields that information from the package user. The use of private types aids

in the achievement of information hiding in that it allows hiding of the details of the type

and prevents illicit exploitation of those details. The task construct facilitates the

construction of concurrent systems and also can represent actor objects as described by

Booch [BOO86]. Inheritance is somewhat more difficult to establish in Ada, although

Booch [BOO86] suggests some means of accomplishing this. The parent-child hierarchy

and the seniority hierarchy can be implemented via the separate clause and the with�use

context clauses, respectively [RAJ85].

2.3. Graphical Representations for Algorithms

Up to this point, GR's have been addressed in conjunction with the specification

languages and methodologies which they support. These diagrams are for the most part at

the system and architectural levels. Block diagrams, data flow diagrams, and structure

charts fall into one or more of these categories. A discussion of GR's of software would

not be complete without a review of those notations specifically intended to represent

algorithms. In Section 2.3.1, many specific GRA's are cited. In Section 2.3.2, the

literature survey of empirical studies of GRA's is summarized.

2.3.1. Specific Notations

L _

Since the ANSI flowchart was introduced in the mid-50's, numerous notations

have been proposed and utilized. Several authors have published notable books and papers

that address the details of many of these [MAR85b, TRI88]. Tripp, for example, describes

18 distinct notations that have been introduced since 1977. Figure 4 contains a

chronological list of traditional as well as lesser known notations. In general, these

diagrams have been strongly influenced by structured programming and thus contain
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Diagram Name

Flowchart

Doran Chart

Wamier-Orr

Dimensional Flowchart

Lindsey Chart

Flowblocks

Ferstl Chart

Schematic Logic

SPDM Diagram

UPC Diagram

Compact Chart

GREENPRINT

SSD Diagram

Schematic Pseudocode

Problem Analysis Diagram (PAD)

Rothon Diagrams

Structure Chart

Action Diagrams

FPL

Control Structure Diagram (CSD)

Box Chart

FP Diagrams

Contributor/Date

Von Neumann (mid-50's)

Doran and Tate (1972)

Warnier (1974), Orr (1977)

Witty (1977)

Lindsey (1977)

Grouse (1977)

Ferstl (1978)

Jensen and Tonies (1979)

Marca (1979)

Harel, Norvig, Rood, To (1979)

Hanata and Satoch (1980)

Belady, Evangelististi, Power (1980)

Kanada and Sugimoto (1980)

Robillard (1981)

Futamura, Kawai, Horikoshi, Tsutsumi

(1981)

Brown (1983)

Chyou (1984)

Martin & McClure (1985)

Taylor, Cunnift, Uchiyama (1986)

Cross (1986)

Johnson (1987)

Pagan (1987)

Figure 4. Graphical Notations for Program Design.
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control constructs for sequence, selection, and iteration. In addition, several contain an

explicit EXIT structure [LIN77, FER78, JEN79, MAR85b, CRO88a, CRO88b] as well as

a parallel control construct [LIN77, FER78, HAR79, MAR85b, CRO88a, CRO88b].

However, none of the diagrams cited above explicitly contain all of the control constructs

found in Ada.

Several diagrams were found to be particularly relevant to the GRASP/Ada project,

including the Nassi-Shneiderman diagram, the Warnier-Orr diagram, the action diagram,

the schematic pseudocode diagram, and the control structure diagram. These diagrams are

functionally similar in that they each have constructs for sequence, selection, and iteration.

However, the symbols or icons and the spatial arrangement used for these individual

constructs are distinct. Each of these diagrams is illustrated in Figure 5 and briefly

described below.

The Nassi-Shneiderman diagram [NAS73] was developed as an alternative to the

flowchart. The control structures in Nassi-Shneiderman diagrams are represented using

detailed boxes that fully delimit the scope of the structure. Control enters the structures

from the top of the box and leaves at the bottom. Nested structures are realized by nesting

the appropriate construct boxes. A completed Nassi-Shneiderman diagram consists of a

labelled box containing nested boxes. Nassi-Shneiderman diagrams are very clear and

simple to follow, although they can be difficult to draw and edit manually.

Warnier diagrams [WRN74, WRN81] use a simple symbology consisting of

braces, pseudocode, and logic symbols, and are employed to analyze systems in a

top-down fashion. The diagrams are easy to read and understand, even by laymen, which

is convenient when communicating with end users. The most important property of the

diagrams is that they show information in a hierarchical structure while preserving

information from level to level. Any given level is a complete synthesis of all its sublevels,

and all of the sublevels belonging to a given level comprise a complete analysis of that

level. In fact, each level in the diagram may be thought of as a set, and each sublevel may

be thought of as a subset. Orr [ORR77] has taken some of Warnier's concepts and
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integrated them with other concepts taken from sources such as HIPO. The resultant

diagrams are commonly known as Warnier-Orr diagrams.

The action diagram [MAR85] is a graphical representation that can be considered as

a graphical overlay to source code. It consists of a series of structures, most resembling a

detailed bracket, that are drawn to the left side of the source code in the space generally

unused because of tabbing and indentation. The action diagram is simple to draw and edit,
!

and shows structure nesting well. However, it can be difficult in a heavily nested diagram

to tell what structures are nested, as the details which differentiate most action diagram

constructs are generally confined to the top and bottom of the bracket.

Robillard [ROB86] has identified two existing problems with conventional source

code documentation. First, source code is not generally documented systematically, but is

often done rather haphazardly after the coding. Since the documentation is not an integral

part of the language itself, it tends to vary widely from practitioner to practitioner, as each

programmer generally has his own documentation style. Second, documentation is often

done in a bottom-up style as the programmer scans through modules adding comments here

and there. Robillard's Schematic Pseudocode (SPC) is a graphical representation for

documentation which purports to solve both of these problems. It resembles an action

diagram in that it uses lines and brackets on the left side of source code to represent control

flow. An interesting aspect of SPC is that it may be represented by an LL(1) grammar.

Because of this, Robillard was able to construct a software environment (SCHEMACODE)

for editing SPC diagrams and for automatically compiling SPC documents into code.

The control structure diagram (CSD) [CRO86] was designed to improve the

readability of algorithms by highlighting their control structure. In addition, the CSD

attempts to clearly depict the individual control paths defined by the constructs. And, as

was the case with the action diagram, the CSD can be conceptually drawn or overlayed

onto source code and thus may be considered a graphical extension of it. The CSD is more

fully described in Section 3.3.
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Designing and automating graphical notations is an important research area in

computer-aided software engineering. A critical but often overlooked component of this

process is that of empirical evaluation of these notations. One of the major purposes of

GRA's is to increase comprehension efficiency (less time, fewer errors). Thus, while a

GRA may be intuitively preferred on the basis of increased comprehension, it should be

evaluated formally to determine any actual increases and their significance. This section

begins with a summary of the literature on general program comprehension and concludes

with a brief discussion of empirical studies that dealt with GILA's.

There were numerous articles that dealt with programmer behavior and general

program comprehension. Although these articles do not address the subject of GRA

comprehension, they axe important because they indirectly support the use of GILA's.

Three articles (BAS86, BRK80, CUR86) emphasize some important points about

evaluating programmer behavior in empirical research. All recognize that programmer

behavior is a relatively new but important topic. But evaluating programmer behavior is

akin to evaluation of any other kind of human behavior and requires strict adherence to the

methodologies followed by the psychological and educational realm of human behavioral

observation. These three articles offer suggestions for attaining these goals.

The most comprehensive body of programmer comprehension theory is

summarized in an article by Brooks (BRK83). His theories are supported by a number of

empirical studies. Brooks explains that comprehension is a top-down approach involving

the recognition of "beacons", or key parts in the programming language (WlE86). This

recognition, along with the programmer's expectations (SOL84), leads to the formation of

hypotheses about the function of the program (GUG86). The programmer validates or

changes the hypotheses in an iterative process of spotting more beacons and formulating

inquiries about the program's activity (LET86). The ability to recognize beacons and

formulate hypotheses depends on programmer experience and knowledge: novices possess
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underdeveloped skills in these areas.

Five other articles support these theories with studies on the effects of program

structure on comprehension. Four support the use of meaningful comments, indentation,

and white space to show structure of the program (MAP86, SHE79, SHN77a, SHN76). A

fifth (SIM73) went further by concluding that some constructs used in programming are

more comprehensible than others; the study found that the nestable IF-THEN-ELSE was

more easily understood by nonprograrnmers than the simple JUMP-to-a-label statement.

All these studies support visual chunking or blocking of related parts of the

algorithm, indentation, and meaningful comments, characteristics which are prominent

features in most GRAs.

What makes a good diagrammatic notation is the key point in an article by Fitter and

Green (FI'I79). A picture is worth a thousand words, but the best picture will have the

following: relevance, restriction, redundant recoding, revelation and responsiveness, and

revisability. They close by commenting that it is important for the computer engineering

community to support the behavioral sciences in their research to find the most suitable

GILA.

An attempt was made early in the research effort to find empirical research on the

four oldest GRAs: the Nassi-Shneiderman diagram chart, the flowchart, the action

diagram, and the Warnier-Orr diagram. Unfortunately, the only research that could be

found related to the oldest GRA, the flowchart.

There were four studies which did not support the flowchart for use in

programming applications. All four tested subjecls using the flowchart in various

programming tasks: either program creation, debugging, modification, or general

comprehension. All four concluded that the flowchart was no better than the source listing

(SHN82a, SHN7b, BRO80a) and that it may even inhibit understanding in some cases

(MAY75).

Nine articles supported the flowchart over a listing or PDL. It is noteworthy that

only two of the nine (CUN87, SHE81) tested subjects in use of the flowchart in
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programming tasks. Of the remaining seven, two (SCA87, SCA88) were preference

surveys (the flowchart was more preferred than pseudocode for a number of tasks), and

were not empirical comprehension studies. The remaining five studies (WRI73, BLA73,

BLA74, KAM75, KRO83) tested the use of the flowchart in nonprogramming

applications, such as the use of a correct flowchart in procedural problem-solving tasks

(such as f'mding your way out of a maze). One could conclude that perhaps the utility of the

flowchart depends on the manner in which it is being used.

This conjecture is substantiated by two more studies (BRO80b, GIL84). The first

found that, when subjects searched for a bug in a linear fashion, the flowchart was better

than the listing, but if the search was nonlinear, as so many programmer tasks are, use of

the listing was more accurate in spotting the bug. The second article found that utility of the

flowchart depends on the nature of the task and the strategy the programmer uses to employ

these tasks. Thus, the issue of the utility of the flowchart is not a clear-cut one. In addition,

much more research is needed on the other GRAs.

Two articles looked at the use of the data-flow diagram, a graphical representation

of program architecture commonly used in software engineering applications. One showed

the advantage of using data-flow diagrams in library use over other standard library

methods (CAR86). The second (NOS86) was an empirical study demonstrating the

comprehensibility of the task-oriented downward cascading menu representation over the

DFD.

The last group of articles related to software engineering methods and tools. The

first (YAU8_5) surveys various techniques used to design software. They describe the

stages for software development and the methods for validating and verifying the

correcmess of software. Shneiderman (SHN82b) discusses ways for making a system

more amenable to human use. The last two articles (RAE85, BRW85) discusses automated

software development tools which utilize various graphical representations such as PDL,

flowcharts, and Nassi-Shneiderman diagrams.
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Data flow diagrams are used to produce a graphical representation of a system. The

diagrams resemble connected graphs with elaborated nodes. The nodes of the graph

represent processes or data stores, and the links between nodes represented data flowing

between them. Currently, there are two popular varieties of data flow diagram: the Yourdon

data flow diagram [YOU78] and the Gane and Sarson data flow diagram [GAN79]. Each

uses a slightly different syrnbology to achieve the same end results. Although the Yourdon

data flow diagram appears to be the more common variety, the Gane and Sarson rendition

is more f'mely developed and is better suited for automation. Batini, Nardelli, and Tamassia

[BAT86] have developed algorithms for the automatic layout of these data flow diagrams.

The structure chart is a graphical representation of a system's architecture that

exhibits the various modules within the system and their invocation hierarchy. Modules are

represented by small boxes which contain the name of the module. Invocation of one

module by another is denoted by an undirected line from the calling module to the called

module. The driver module is commonly placed at the top of the diagram, and modules

which are invoked by the driver are arranged horizontally below it.

Two types of data items are normally found on a structure diagram: control flow

information and data flow information. Control flow items are data items passed from one

module to another that affect the flow of control within the called module. These items are

represented on the structure chart with an arrow that has a hollow circle at the end (the

name of the control item is normally placed near the shaft of the arrow). The control arrow

is placed near the invocation line that connects the boxes representing the two modules.

Data flow items represent all other data items that may be passed from one module to

another. These items are similarly represented using an arrow that has a filled circle at the

end.

For complex systems, structure charts may grow rather unwieldy in size. To

combat this problem, structure charts are generally layered, so that individual pieces of the
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structure chart may each fit on a normal typed page. For systems which pass a large

number of parameters from module to module, the names of the parameters are often

replaced with a reference number, and the chart is accompanied by a table which shows the

list of parameters associated with each reference number.

2.5. Reverse Engineering

Acly [ACL88] defines reverse engineering as "an emerging term used to describe a

procedure and a set of tools which make it easier to maintain-and update old application

code. Reverse engineering extracts the specifications from existing systems and translates

these specifications into the more abstract specifications used for design and analysis." He

points out that users typically need more help with maintenance programming than with

software design and development: in his opinion, automated reverse engineering is the

"missing link" that can bridge the gap between this maintenance of"old", existing code and

development of "new" code.

Acly lists several benefits and drawbacks to the process of reverse engineering.

Some of the benefits he lists follow:

• Existing code for large systems can find new life if they can be deciphered via

reverse engineering tools.

• Specifications and documentation will be up-to-date and will match the actual

program.

• Maintenance (both corrective and perfective) can be performed at a higher level by

modifying the specifications, rather than the source code.

Some of the drawbacks Acly mentioned include the following:

• The reverse engineering process cannot be fully automated. Some human

interaction will always be required to extract a meaningful specification from existing

source code written by conventional means.
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• There must be some way to prevent bad programs from being converted into bad

specifications. Poorly written programs should be modified or restructured in order to

produce an accurate and meaningful specification.

With these thoughts in mind, let us consider some case studies in reverse

engineering.

Blaze and Cameron [BLZ88] have created D*, an automatic documentation system

for IC* programs. IC* is a project under way at Bell Communications Research that will

attempt to provide an environment for designing and developing complex systems for

networking and communications. Two languages (C&E and L.0) are used to implement

IC* systems, and D* is the automatic documentation tool for these languages.

D* programs depict the program variables and the relationships between them. The

documentation takes the form of a grid of boxes, with each box representing a program

variable. Lines are drawn between the boxes to denote relationships between the variables.

Information hiding is supported: groups of boxes earl be tucked inside a "parent" box as an

abstract representation.

Blaze and Cameron believe that the D* system produces good documentation

quickly, which leads them to believe that custom documentation systems for other

languages are feasible. They have proposed the possibility of using D* documentation for

other, more conventional languages.

Fukunaga of the Science Institute of IBM Japan, Ltd. [FUK85], has created

PROMPTER: a system for annotating programs written in assembly language. He

considered using a rule-based approach, which means that knowledge rules detailing how

specifications are to be extracted from the source code must be supplied. However, he

found that it was difficult to isolate the different kinds of knowledge needed to produce

meaningful annotations. He therefore pursued an object-based approach to program

annotation.

PROMPTER considers registers, data storage, and program instructions to be

"objects" which may be manipulated by "messages." The system consists of four parts: (a)
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a symbolic simulator which looks at each instruction and simulates it to determine the data

transfer needed; (b) an abstraction part, which extracts a conceptual meaning from an

assembly instruction; (c) a high level annotator, which combines the low level concepts

determined by the abstraction part and creates more high level annotations for the program;

and (d) a controller, which passes control back and forth among the other components as

needed.

Fukunaga feels that PROMPTER is quite successful for providing low-level

annotation of existing programs written in assembly code. He plans to do further

experimentation with providing higher-level automated program documentation.

CARE (Computer-Aided Reverse Engineering) is a project being carried out by

Wagner [WAG88] that will investigate the possibility of maintaining and redesigning

programs using a set of tools interacting with a data dictionary. The first CARE prototype

is designed for the development of COBOL systems, and the tools available will include a

parser for deeonstructing programs and storing them in the CARE data dictionary, a

restructuring tool that replaces unstructured program constructs with more easily

maintainable structured versions, an architectural viewing tool that allows the modular

hiearachy of the system to be studied, a query system, and a tool for software tracing.

CARE will eventually support a graphical design language known as GRAPES which may

be used to develop software.

Harada and Sakashita [HAR83] have developed HIDOC, another tool for providing

graphical representations of COBOL programs. HIDOC automatically produces four

distinct types of program documentation. The HIDOC Process Chart is a quick reference

that shows the environment the target program deals with, including any external entities

and f'des. The Hierarchy Chart is a standard structure chart which shows program modules

and their interrelationships. The Data Chart graphically presents data structures and file

record formats. Finally, the Source Listing Cross Reference annotates the program with a

simple graphic akin to the action diagram that allows logic flow within the program to be

traced more easily.
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VIC (Visual Interactive C) is an environment for supporting the maintenance and

development of C programs. Designed by Rajlich et. al. [RAJ88], VIC allows a program to

be represented in two forms: in its normal form as code, or in a visual, iconic form. The

visual form allows C programs to be seen as an entity-relationship graph (ER-graph).

Because VIC contains four distinct groups of operations that allow conversion of code to

and from ER-graphs, it becomes useful as a reverse engineering tool for providing a

graphical representation of large C programs.

Fischer et. al. [FIS87] have developed WLISP, a system which contains

object-oriented tools for building and reusing user interfaces. The interfaces from existing

programs developed using WLISP may be modified and used as a starting point for

developing interfaces for new applications.

TOMALOGIC is a reverse engineering tool developed by Lerner [LER88] that

constructs system matrices from program code. A program is decomposed into nodes,

small program chunks that have one entrance and one well-defined exit. TOMALOGIC

then builds a matrix of these nodes, showing the possible transitions from node to another.

A primary application of TOMALOGIC is the decomposition of "spaghetti" code so that it

may be structured.

Grau and Gilroy [GRAB7] have examined the feasibility of mapping Ada programs

into the DOD-STD-2167 documentation structure. DOD-STD-2167 is a software

development standard created by the Department of Defense that "defines a consistent

design structure for system and software development projects." Grau and Gilroy

examined the Ada language to determine the entities which compose an Ada program, and

then looked for corresponding elements in the DOD-STD-2167 structure. After considering

several approaches, they determined that a "simple, compliant one-to-one mapping of all

Ada programs to DOD-STD-2167 does not exist." However, they do feel that the related,

many-to-one mapping rule is sufficient for mapping Ada programs into DOD-STD-2167.
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2.6. Conclusions

The major findings of the literature survey that are considered most relevant to

GRASP/Ada have been collected and summarized below.

• Automated programming is feasible, especially for limited domains. Several

authors have demonstrated this for particular domains [BAL85, BRS85, CRA86, HAM79,

MOR88, SIE85, URB85].

• Specification languages are a promising method for realizing automated code

generation. There is considerable interest in the use of specification languages for

achieving automated code generation: indeed, this appears to be the preferred method

[ABR80, BAL85, BEI84, CRA86, GUT85, HEV88, LUC85, MOR88, SIE85, URB85,

ZAV86].

• Specification languages should be sufficiently rigorous to promote correctness.

This is a general consensus among several authors [ABR80, ALF77, BAL85, BEI84,

GUT85, JON80, KEM85, LUC85, MAR85a, MEY85, MOR88, SIE85].

• Specification languages should utilize graphics where possible, and specifically

those graphics commonly used in software engin_ring. Many recent software engineering

development environments make use of graphics for specifying programs [ART88,

CRA86, HAM79, HEV88, MOR88, ROB86, SIE85].

• Specification languages should be accompanied by an integrated environment

suitable for use throughout the entire life cycle. This may be an influence due to Ada,

because Ada programmers are strongly suggested to use an APSE (Aria Programmers

Support Environment). Several specification languages have accompanying support

environments [CRA86, HAM79, MOR88, SIE85].

• Object-oriented design appears to be the leading design method candidate for

designing systems in Ada. Data flow oriented methods are currently being used as "front

end" methods for object-oriented design.
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• Graphical representations are useful in understanding programs. This has been

suggested in studies done by Gilmore and Smith, and by Brooke and Duncan [BROS0b,

GIL84]. The empirical study which composes part of the GRASP/Ada project is expected

to confirm this hypothesis.

• An important part of reverse engineering is the understanding of existing

programs, especially through the use of graphics. Many systems which attempt to reverse

engineer existing programs produce graphical documentation as a result [BLZ88, HAR83,

RAJ88, WAG88].

w
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3.0 Baseline Requirements

In this section, the requirements for the Phase I GRASP/Ada CSD generator

prototype are presented. First, the goals and objectives for the generator are briefly

discussed. This is followed by a statement of general requirements for the CSD generator

prototype and justification for several of the tradeoffs encountered during requirements

analysis. Finally, the CSD constructs for Ada are introduced.

3.1 Introduction

The overall structure of the GRASP/Ada project may be seen in the data flow

diagrams (DFD's) presented in Figures 6 and 7. In these diagrams, the major functions to be

provided by the system, the data upon which they operate, and the data which are produced

may be seen in context. The system DID in Figure 6 shows the manner in which the user

interacts with the system. The user provides Ada source code to the GRASP/Ada system

which in turn parses the code. The primary output of the Phase I prototype is the procedural

GR (CSD).

Figure 7 shows the second level of the GRASP/Ada system. The f'n'st process, P1,

is the scanner/parser which takes the Ada source code and breaks it down into syntactical and

semantic units. As the program is parsed, certain information is passed to the other

processes, specifically P2 which produces procedural GRAs, and P3 which records program

information. P2 looks at the Ada control constructs and prints the appropriate CSD

representation for those constructs.

Although the immediate result of the implementation of the CSD generator will be a

tool to aid the programmer in code comprehension and maintenance, there is another, more

far-reaching goal in mind. Foremost in the GRASP/Adaproject is the promise of gaining
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Figure 6. The System Data Flow Diagram (DFD) for GRASP/Ada (Phase I).
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insight into the problem of automatic code generation. Most research efforts in this area have

tackled the problem by designing systems from high-level design specifications and

attempting to have automated tools generate correct implementations. Unfortunately, it is

difficult to know exactly what should be provided in a good design specification. For that

reason, the GRASP/Ada project is approaching the problem from the reverse side. By giving

programmers incrementally more and more abstract tools to display code and its meaning, the

tools can be examined to determine their effectiveness at each step. Observing the effect of

graphical representations on "real" source code instead of trivial examples should prove most

beneficial in the design of tools that adequately abstract meaning from implementation. In the

GRASP/Ada project, procedural tools (the CSD) will be introduced f'trst and applied to "real"

code. Next, architectural tools (the structure chart and the DFD) will be devised and

examined. It is hoped that by working up from a ground level, practical and useful tools will

evolve: once these tools have been proven, the problem of automatically generating code

from them can be addressed.

The primary contributions that were gathered from this particular phase of the project

(Phase I) are twofold. First was the evolution of an improved CSD with constructs for

concurrency and other features specifically adapted for Ada. Second was the creation of a a

tool for automatically documenting existing Ada programs with the CSD. This tool may be

used to examine the effectiveness of the CSD in practical situations.

3.2 Prototype Requirements

m

In this section, the requirements for the CSD generator prototype are discussed.

Section 3.2.1 reviews several potential implementation environments, Section 3.2.2

examines the various tools that were considered for use in developing the scanner and parser

for the prototype, and Section 3.2.3 briefly discusses the detailed requirements for the CSD

generator.
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-- 3.2.1 Environment Requirements

Many of the requirements for the CSD generator prototype have been purposefully

generalized in order to fit a variety of implementation environments. For implementation of a

prototype, the VAX 11/780 computing environment was selected. Since the CSD generator

produces graphics, and since graphics are one of the least transportable features among

different computing environments, the selection of an environment was a key issue. It is

often easier to rewrite applications for specific computers than to attempt transporting the

graphics routines. For example, the Apple Macintosh treats text and graphics equally,

whereas the IBM PC has separate text and graphics modes. Larger computers such as the

DEC VAX use graphics packages such as Regis and CURSES. Each of these environments

assumes different hardware and software configurations, as well.

The VAX 11/780 was considered the best available environment for implementation

of the prototype for several reasons. It was readily available, and all project members had

ready access to a terminal. It has C, Pascal, and Ada compilers installed, so the prototype

could be coded and tested without any up/downloading. The VAX is connected to Auburn

University's MicroVAX, which has compiler development tools such as LEX and YACC.

Thus, the VAX was identified to be the most attractive development environment presently

available for producing the CSD generator prototype.

3.2.2 Scanner/Parser Requirements and Tradeoffs

m

z

w

During the fall quarter, the implementation of the scanner and parser for Ada was

initiated. During the early portion of this research contract there was much discussion about

the method through which these programs would be created. Several alternatives were

available and axe discussed briefly below.

Manual coding. The first possibility was to code the scanner and parser manually,

but this was quickly discarded for several reasons. The Ada grammar, compared to other

third generation languages such as Pascal and C, is an extremely large grammar.
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Constructing parse tables for even these less complex languages is a very difficult task, and

errors could take an exorbitant amount of time to detect and remove. Given the size and

complexity of Ada, this approach was abandoned in favor of more reliable automated

methods of scanner/parser generation.

The next possibility was to find a suitable grammatical description of the Ada

language and use it as input for an automated scanner/parser generator tool. Scanner/parser

generator tools are available commercially as well as through university research programs,

' and several of these were considered. Two such tools, developed here at Auburn University,

were considered for use in the GRASP/Ada project.

CODE$IT. The In'st, designed by Dr. Mel Phillips of Auburn, was CODE$IT, an

LL parser generator for the IBM 360]370 that generates PI_/I scanners and parsers.

CODE$IT has been used in the compiler construction course at Auburn University for

several quarters and has been proven to be fairly reliable. However, the use of CODE$IT for

the research was rejected for several reasons. The primary factor in the decision was that

CODE$IT produces parsers and scanners written in PL/I, a language that is either not

available or not suitable for use on the target machines being considered.

LL parser generator. The second locally available tool was an unnamed LL

parser generator for the Apple Macintosh written by Greg Whitfield, a master's student at

Auburn University. Its use was discounted for similar reasons as CODE$IT. It is a relatively

unproven tool in that Mr. Whitfield has tested it with grammars as large as 100 productions,

but Ada has roughly four times that many. In addition, the tool requires large amounts of

memory in order to run properly. Mr. Whitfield reports that small grammars of

approximately 100 productions require about one megabyte of internal memory in order to

produce a parser/scanner. It was expected that producing a parser/scanner for Ada would

require a minimum of two megabytes of memory, and probably more. The Macintoshes

available at Auburn all have one megabyte of available memory, although one of the research

assistants has access to a Macintosh that has two megabytes of installed memory. The

possibility of modifying the parser generator to run in less memory was briefly considered,

but this would have required too much time for what was a fairly unimportant part of the
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research effort.

LALR 3.0. The first tool that showed promise was the LALR(1) parser generator,

LALR 3.0 from LALR Research. It runs on the IBM PC, and creates parsers in C (although

the documentation claims that the program may be changed to produce parsers in other

languages, such as Pascal or Ada). Auburn University purchased a copy of this program,

and it was utilized on the GRASP/Ada research project until several problems were

encountered. First, we examined the Ada grammar provided with the LALR tool and found

that it was not an accurate Ada grammar. We found at least one instance of a perfectly legal

Ada program that the LALR grammar would not accept. Second, because LALR 3.0 runs on

the IBM PC and development of the CSD generator is proceeding on the VAX 11/780, the

up/downloading effort was getting tiresome. Keeping all of the development tools on the

same computing system soon became a high priority for the GRASP/Ada project. Third,

although the LALR tool came with an Ada grammar, it did not come with a lexical

specification for Ada. This meant that a lexical analyzer for Ada would need to be specially

written for the project. The LALR tool did come with an example scanner for the C

programming language, but the scanner utilized many "tricks" in order to be more efficient in

the scanning of C programs. Adapting this scanner for Ada would mean restructuring and

rewriting the program substantially, and after some experimentation, this approach was

abandoned.

LEXIYACC. LEX, a lexical analyzer generator, and YACC, an LR parser

generator originated at Bell Labs and are now in the public domain and are highly regarded in

the literature. Although these tools would have been excellent for use in the research project,

we encountered some problems that discouraged this approach. However, we did select

"improved" versions of LEX/YACC.

FLEX/BISON. We found an updated lexical analyzer generator (FLEX) from a

software library at Purdue University (J.CC.PURDUE). Next, we received a public domain

version of YACC, called BISON, from a software repository at MIT (PREP.AI.MIT).

BISON runs on the IBM PC and can handle larger grammars than the version of YACC on

Auburn's MicroVAX. Finally, we located an accurate LALR(1) grammar and lexical
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description for Ada from a public domain exchange for Ada software at SIMTEL-20.ARMY.

With the proper tools in hand, generating the scanner and parser for Ada was

relatively straightforward. The scanner/parser was tested on several Ada programs written by

a doctoral student at Auburn (Mr. Wenkai Chung).

Because all of the compiler generator tools produce C code, including FLEX and

BISON, it was decided to do all of the prototype coding in C. To choose another language

would have meant translating the scanner and parser each time they were altered, which

would have added up to a prohibitively large coding effort. The only other language

considered was Pascal, because the Macintosh graphics routines use a Pascal interface. Had

the Macintosh been chosen for development, Pascal may have proved to be a better choice of

language.
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3.2.3 CSD Generator Detailed Requirements

The CSD may be perceived as "graphical prettyprinting." Therefore, the next step

after producing a scanner and parser was to produce a prettyprinter for Ada source code.

Tentative requirements were developed for this tool after considering the following

possibilities. A software switch for placing Ada keywords in boldface is desirable, as well as

a software switch for automatically converting Ada keywords to lower case, as per the Ada

standard. Double and triple spacing certain portions of Ada code was determined to be

necessary in order to represent properly certain CSD constructs such as the procedure header

and package header.

Once the CSD constructs have been formalized, grammatical representations will be

written for each. These grammatical representations could be embedded in the Ada grammar

itself, so that the CSD for Ada actually becomes a superset of the Ada language. This

embedding of graphical documentation in the grammar rules of a language is fairly new: the

only notable examples include SchemaCode [ROB86J_ and GRASP/GT [MOR87a, MOR87b,

MOR88].

One of the problems involved with creating grammatical representations for CSD
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constructswasthatof determininghow far to breakup thegraphicalconstructs.It ispossible

that the CSD symbolsmight be useful in reconstructingthe parsestackat anypoint in a

program given only the CSD symbolsfor that line in the program. Sucha featurecould

provide a basisfor thedesignof an interactiveCSDworkstationenvironment.Insteadof

having to reparseaprogramfrom the first line, only the line being edited would need to be

read in order to regenerate the parse stack and ensure the correctness of the modified

construct.

3.3 CSD Constructs for Ada

!

In this section, the new constructs created to map the CSD to Ada are presented. It

will be noted that most of these constructs were introduced to handle the problem of

representing Ada tasking.

The control and tasking constructs of Ada were examined and tentative CSD

representations for each of these constructs were created and then iteratively refined. The Ada

constructs have been divided into three groups. Group I (see Figure 8) consists of the basic

CSD constructs that are found in almost every third generation programming language:

procedures, packages (modules), sequences, selections, cases, for loops, and while loops.

Group II (see Figure 9) contains the control constructs that are specific to the Ada

programming language, including: infinite loops, loop exits, blocks, blocks with

declarations, go to statements, exception handlers, and exception raises. Finally, Group III

(see Figure 10) has all of the Ada constructs related to tasking and parallel processing: task

specifications, rendezvouses (both calls and receives), select statements, guarded and

unguarded alternatives within select statements, aborts, and terminations.

The following criteria were considered as these constructs were refined: readability,

consistency with other graphical representations, consistency with other CSD

representations, and ease of implementation. With respect to implementation, several

assumptions were made (or not made). First, it could not be assumed for what type of

environment the CSD would eventually be implemented. Although newer generation
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-- PROCEDURE

procedure X is

begin

--S;

--S;

__S;

--S;

end x;

--'PACKAGE

package Y is

I procedure z;

I function z return Boolean ;

end Y;

-- SEQUENCE

S;

S;
S;

-- SELECTION

--S;

C then

S;

i s;
_else

[ end if;

S;

-- CASE

S;
_case D is

__----lwhen C1 =>

[end case ;

--S;

-- FOR

--S;

--_f°rs[ in R

S; .
Uend ioop,

loop

-- WHILE

--S;

Wnhile C loop

S;

S;
S;

_oop; :.

--S;

Figure 8.
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-- INFINITE LOOP

--S;

S;
_d loop;

IS;

-- LOOP EXIT

--S;

---Nloop
S;

_ exit when

IF--- s; .
Uend loop,

--S;

-- INFINITE LOOP

--S;

_ oop
S;
S; .

U end loop,
--S;

-- BLOCK

--S;

_begin

I---s;
F---s;

[end;

C;

-- GO TO

S;

-- <<L>>

--S;

--S;

_-__goto L;
--S;

--S;

-- RAISE

S;
raise Err;

S;

-- EXCEPTION HANDLER

S;

--S;

--S;

exception

when Errl ->

--S;

when Erb2 ->

--S;

when Err3 ->

--S;

end;

-- BLOCK WITH DECLARATIONS

--S;
--declare

C : INTEGER;

begin

--S;

--S;

--S;

end;

--S;

w

w

Figure 9.
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-- SELECT

--S;
select

or

do

_/accept J do

._else

[ end select;

-- GUARDED SELECT

--S;
select

4 when C1 ->

"--I _.-_ccept M do

4- [ e_ndS;;

or

when C2 =>

_/accept N

[ end select;

do

-- ABORT

ask body P is

begin

--S;

bort P;

end;
Figure I0.

54

-- TASK SPECIFICATION

task Y;

task body Y is

S;

-- RENDEZVOUS (RECEIVER)

--S;

-4,
_ccept C do
F

_-.

--S;

-- TERMINATE ALTERNATIVE

--S;

--] select

-_ ----/accept F do

+i /-

i

" or
°

L end select;
--S;

Group III CSD Constructs for Ada.
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computing environments such as the Apple Macintosh and NEXT workstations provide

graphical routines and hardcopy devices that would support almost any graphical

representation that could be conceived, implementing the CSD should be feasible on older

systems such as VAX 11/780s and IBM PC's. For this reason, the CSD constructs were

simplified as much as possible so that they can be constructed with the "graphical characters"

specifically designed for the CSD. The CSD generator prototype was targeted for the VAX

11/780 environment, since it was readily available, has good software in the form of the

DEC C and Ada compilers, and has appropriate hardware such as an LN101 laser printer and

v'r220 graphics terminals. Earlier in the research effort, microcomputer environments such

as the Macintosh II or IBM PS/2 were also considered for the prototype, but none were

readily available.

3.4 Empirical Evaluation

An important element of this research is determining the utility of graphical

representations of software. In particular, an empirical evaluation of graphical representations

for algorithms was defined and conducted in parallel with the other tasks associated with the

GRASP/Ada project. Since the population of available subjects had limited, if any, Ada

experience, it was decided to conduct the experiment based on simple control constructs

found in Pascal. In this section, the objectives of the study, and a brief overview of the

procedure, the implementation plan are presented. Appendix A contains a detailed description

of the experiment and an analysis of the results.

:2

3.4.1 Objectives of Empirical Evaluation

There were four basic objectives and associated tasks in the empirical study. The

f'u'st was to determine which, if any, of the conventional flowchart, the control structure

diagram, or pseudocode is most easily comprehended and useful as a debugging aid. Two

measures were observed: efficiency and accuracy. These notations were tested using subjects
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from three experience categories: novice (course(s) in Pascal or PL/I), intermediate (courses

in data structures, algorithms, and software engineering) and experienced programmers

(seniors in a computer science or engineering curriculum).

The second objective was to determine if there are differences among the three

experience groups in levels of comprehension of a particular notation. Novice programmers

have not yet attained the necessary skills needed to modify or debug efficiently a program. It

would be valuable to determine the difference in the error rate between the novice,

experienced and expert programmer groups and note the difference across all notational

formats. Perhaps one representation is more easily comprehended by experienced and expert

programmers but may be a hindrance to novices.

The next objective was to fred the preferred diagrammatical notation between the

novice, experienced, and professional groups, via a preference survey. It is valuable to

determine which notation is the most preferred, since this notation would be the one most

readily used by programmers. Preference will be measured in terms of the task for which the

notation is to be used, as subjects may prefer to use one notation for one purpose, but

another for a different purpose.

Finally, the preference data and the accuracy/efficiency data were compared.

3.4.2 Overview of Procedure

Each subject from a sample of students and professional programmers was given a

brief automated summary on the use of one of the proposed notations, followed by an

automated test (approximately 50 minutes). This test contained three algorithms, each

representing three difficulty levels: easy, moderate, and difficult. Each test represented the

three algorithms in one of the following formats: the conventional flowchart, the control

structure diagram, or pseudocode. Thus, a given subject would observe the three algorithms

in one graphical format. Each algorithm had a number of bugs seeded in it; the subject was

required to determine the exact nature and location of the bugs. The subject was also asked

questions about flow of control. The questions were multiple-choice with five candidate
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responses each. Each question/response was timed. Following the comprehension test, there

was a short preference survey. After a brief explanation of all the notations and how they

show sequence, selection, and iteration, the subject was asked to select and rate which of the

notations he or she would use in a number of programming situations. Subsequently,

statistical tests were conducted on all the data to determine the significance of the results.

3.4.3 Implementation Plan

row-
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The following five tasks were defined to accomplish the procedures described

above.

1. Develop the instrument on paper.

For each experience group (novice, experienced or expert), the tests given were the

same. Each subject observed three algorithms (easy, moderate, and difficul0 represented by

one graphical format. Within each format group, the order in which the algorithms were

presented was randomized, for six possible combinations. All algorithms contained

constructs for sequence, selection, and iteration. The easy algorithm contained simple

variables, the moderate algorithm dealt with arrays and simple records, and the difficult

algorithm consisted of pointers and more complex records. Examples of valid input data (but

not output) will be provided.

A preference test was also created. This survey asked subjects to rate each of the

three notations on a scale of 1 to 5, where 1 is not useful and 5 is very useful, given a

hypothetical task for which the notations are to be used. This survey was included at the end

of each comprehension test.

te_,*
2. Develop the automated instruments.

Once all algorithms had been determined and the questions about them developed,

they were transferred onto an IBM PC-compatible computer. Then the user interface was

produced. This interface first took the user through a discussion of the notation and the way
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it representsselection,iteration,andsequence.Whenthesubjectwasreadyto beginthetest,

thecomputergaveinslructionsaboutthecontentof thetestandhow thequestionswereto be

answered.The userwent througheachalgorithm, answeringquestionsaboutwhereeach

bug waslocatedandaboutgeneralcontrolflow. The interfaceallowedthesubjectto answer

only one questionat a time; once answered,the subjectcould not go backto a previous

question.Theuserwasallowedto view thealgorithmaslong asrequired.Eachquestionwas

timed. As an answer was given, the computer stored the question, the response, and the

elapsed time on a record that was made for each subject. When the user was finished with the

test, the interface displayed a "sign-off" message and prepared for the next subject, who was

given a test with the algorithms in a different order and in a different graphical format.

3. Testing and evaluation of the instruments.

Using a small sample of students the instruments were tested to make sure there

were no problems and that they tested what was intended. The presentation of the test was

also checked.

Once this small sample was taken, it was statistically analyzed. Based upon the

variance obtained, the sample size needed for the entire experiment was determined.

4. Implementation of the insmmaents and collection of the data.

After the instruments were developed and tested, they were implemented at Auburn

University.

5. Statistics and evaluations.

Once all the data was collected and stored, the IBM 360/370 version of SAS was

used to analyze and determine the results. A more detailed explanation of the statistics and an

analysis of the collected data are contained in Appendix A.

: =
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4.0 Prototype Design and Implementation

In this section, the design and implementation of the prototype GRASP/Ada CSD

generator are discussed. First, the major software components which comprise the CSD

generator are outlined. This is followed by in-depth examinations of each component.

4.1. Introduction

The heart of the GRASP/Ada CSD generator very much resembles the structure of

an Ada compiler. A parser and scanner for the Ada source language were constructed using

an Ada grammar and the software tools FLEX and BISON. But, where a compiler normally

includes action routines that transform high-level grammar constructs into machine code,

GRASP/Ada includes action routines that construct and manipulate the CSD prefixes that

begin each line of source code. The implementation of these routines was inspired by the

concept of object-oriented design. A pref'oc data object which manipulates lower-level CSD

graphics characters was designed, with accompanying functions which create, manipulate,

and print the CSD. These functions are called by the parser and scanner when appropriate as

the Ada source code is read from the input file. The prefix and Ada code are then combined,

prettyprinted and buffered for output.

A user-friendly and relatively transportable interface was designed to drive the

GRASP/Ada CSD generator. The interface provides the user with the capability to specify

options for the CSD generator quickly without having to learn cumbersome command

languages and option formats. The user has the freedom to choose from a variety of line

spacings and font styles. All options are visible onscreen and can be selected and modified

using only the terminal cursor keys and the RETURN key.

For previewing the CSD before submitting the GRASP/Ada output to a laser printer,

the GRASP/Ada system allows the user to transfer to a specially modified version of
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Digital's EVE editor. This editor allows the user not only to view the CSD onscreen, but to

manipulate it spatially in selected ways. Options are provided for temporarily cloaking the

CSD so that the user is presented a traditional textual view of the Ada source code, then

redisplaying the CSD to assist the user in interpreting the code. A future option still under

development will allow the user to "collapse" portions of the Ada program so that the overall

program structure and control flow can be more readily seen.

Finally, the construction of the GRASP/Ada system necessitated the prior

'implementation of several software tools for creating fonts and "massaging" Ada code to

render it more suitable for the CSD generator. These tools were designed so that they could

be quickly reconfigured to generate software components for versions of GRASP/Ada that

run on computer systems other than the VAX 11/780.

In the following sections, each of these software components (parser/scanner,

prettyprinting routines, user interface, CSD viewer, and software tools) will be examined in

more detail. Where appropriate, the tradeoffs and design decisions which dictated the

implementation of each component are discussed, and each component is analyzed in terms

of adaptability and transportability to new hardware configurations. A separate CSD

Generator User Manua/has been drafted which contains additional details and examples.

4.2. Parser�Scanner

mw

w

w

As described earlier, the CSD generator is largely grammar-based. The backbone of

the generator is a combination of a FLEX-generated scanner and a BISON-generated

LALR(1) parser. The lexical specification and the grammar input to these tools have been

supplemented with calls to routines to effect the graphical or nongraphical prettyprinting of

the code as it is parsed. These routines will be explained in more detail in the next section.

The placement of prettyprinting routine calls in the middle of grammar rules has been

an important part of the project and also the source of much grief. Normally, a semantic

action associated with a grammar rule is placed at the end of the rule; when all the right-hand

symbols of a grammar rule have been recognized and when the value of the lookahead token
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determines that a reduction is in order, the rule is reduced, the right-hand symbols on the

stack are replaced with the left-hand symbol, and any block of actions at the end of the rule is

executed. However, when an action is placed in the middle of a rule, BISON is forced to

substitute a self-generated nonterminal for the action block and then produce a new rule

whose right side consists solely of the action block. This simulates the end-rule scenario.

A problem has appeared with this extensive use of mid-rule actions, however.

Conflicts of both the shift/reduce and reduce/reduce variety have occurred when actions have

• been placed inappropriately. At times, the conflicts have required slight alterations of the

original grammar.

Another problem involves the use of the scanner for much of the work of

prettyprinting. At first, the work of filling the buffer containing prettyprinted Ada code (the

buffer will be explained in the next section) was performed by the scanner, for example,

when the scanner recognized a certain keyword, the scanner placed that keyword into the

buffer and then returned the corresponding token to the parser. However, at times the parser

would call on the scanner to produce a lookahead token in order to determine its next action.

This token would not be shifted onto the stack right away; in many cases, the token would

not even be part of the construct under consideration. Even so, the prettyprinting routine

called for on recognition of that token would be executed, often placing the lexeme on the

line just previous to its proper position. This problem was solved for keywords, literals, and

identifiers by adding the appropriate actions directly to the grammar instead of the lexical

specification, although the problem still exists in part with regard to whitespace and

comments.

4.3. Graphical Prettyprinting Routines

The architecture of the CSD generator tool with respect to the graphical

prettyprinting routines is shown in Figures 11 and 12. Figure 11 is an adaptation of

component objects in the system. The colored boxes represent object classes; listed inside

these boxes are the operations associated with each object. Although the collection of
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Figure 11. GRASP/Ada Component Objects.



Figure 12(a). GRASP/Ada Hierarchical Structure.



Figure 12(b). GRASP/AdaHierarchical Structure.
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Figure 12(c). GRASP/Ada Hierarchical Structure.
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prettyprinting routines (represented by the clear (or uncolored) box) is not an object

according to the def'mition, the collection holds a central position in the object architecture.

The arrows in the diagram show dependency among the objects and "unfettered" procedures

where the entity at the tail of the arrow depends on the resources of the entity at the head of

the arrow. Figures 12(a), 12(b), and 12(c) show the hierarchical structure of the procedures

and object operations. These objects and operations, and their interaction with the parser are

discussed in more detail below.

' Over sixty graphical prettyprinting routines were developed for this project. Most of

these routines are based upon two central object classes, LineBuffer and CSDPref'tx.

The CSD generator is line-oriented in that it manages only one line of prettyprinted

code at one time; previous lines are developed, output, and forgotten. Line__Buffer is

fundamentally a character buffer of fixed size which holds processed Ada lexemes and

white, space until it is deemed appropriate to output the line. Line_Buffer then is cleared and is

ready to hold another line of prettyprinted code. A prettyprinted line of code is output (CSD

and all) by the routine Finish,LlneO. A prettyprinted line of code can be terminated when the

Line_Buffer would surpass its capacity with the addition of another lexeme, when the

addition of a lexeme would cause wraparound, when the end of a construct is reached, or at

other times called for by formatting conventions for Ada (e.g. a line beginning a FOR loop

description is ended when the word loop is encountered). The last case is handled by the

direct insertion of Finish_Line0 into the grammar.

The CSD_Prefix contains coded information pertaining to what CSD characters

would be output if the Line_Buffer were output at that moment. The CSD_Prefix is an array

of structures known as CSD_Symbols. Each CSD_Symbol represents and holds the place of

a sequence of CSD characters which are to be output when the Line_Buffer is emptied. Three

fields contained in each CSD_Symbol determine which character sequence is appropriate:

CSD_Code, Point_in_Construct, and Continuation.

The CSD Code determines which of CSD construct should be output and,

accordingly, corresponds roughly to constructs in Ada. Over seventy codes represent major

constructs such as the FOR loop and minor constructs such as TYPE declarations.
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Point in Construct declares at what point in the CSD diagram the generator is

currently engaged. For instance, if the CSD_Code field for a particular CSD_Symbol calls

for a LOOP construct, the Point_inConstruct field will help clarify whether the character

sequence to be printed will contain the rounded top of the loop or the parallel lines of the loop

body.

Each (CSD_Code, Point in Construct) tuple is associated with two possible CSD

character sequences. The ftrst sequence is what is output the f'n'st time the tuple is translated.

.The second sequence is what is output on subsequent lines. The second sequence is useful

for times when the Line_Buffer is filled and output before the (CSD_Code,

Point_inConstruct) tuple changes. The field Continuation designates which sequence is

appropriate. This field is set to YES only after a prettyprinted line is output.

The tuple (CSDCode, Point_in_Construct, Continuation) is used to index a table

whose entries reference another table of normal character sequences. For each CSD_Symbol

in the CSD_Prefix, the appropriate normal character sequences are concatenated and then

translated by the font routines to produce the CSD characters for that line.

Based on these two objects, it was hoped to minimize the coupling between the

lexical and grammatical description of the language and the prettyprinting routines

themselves. This hope was undermined by a number of factors, however. The structure of

the grammar itself made it necessary at times to write routines to alter the CSD_Prefix in

some less than subtle way and insert these actions directly into the grammar. Also, there

were quite a number of exceptional conditions which, while not directly dealt with in the

grammar, caused the size of some of the routines and the total number of routines to grow.

Special sets of routines have been written to handle exceptional situations, such as

printing of boxes for Ada subroutine and entry calls. Further, a stack of loop names exists to

maintain loop nesting in order to determine which loop construct to override in the event of

an EXIT statement. One other exceptional condition has been the handling of comments.

Since comments are entirely lexical entities and are not even mentioned in the grammar,

prettyprinting of comments has fallen prey to the problems involved in synchronizing

grammatical and lexical prettyprinting routines mentioned at the end of the last section. A
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compromise has been reached whereby comments are collected into a special buffer by the

scanner until such time as is deemed appropriate to output them. These times are represented

by calls to output the comment buffer within the bodies of some of the major prettyprinting

routines. Original positioning of comments is lost in this process, but at least they are

maintained in some order.

Another set of special routines involves the handling of names and expressions. In

the Ada grammar that is available, subroutine and entry calls are recognized as names.

,Names can be exceedingly long and complex and can involve complex expressions as well.

The problem was that the components of a name were appended to the Line_Buffer as they

were recognized; if the name were exceedingly long, parts of it could be output before the

entire name was recognized by the parser. This caused a major problem for handling both

subroutine calls, entry calls, and assignment statements in that part of the text had already

been output before the proper adjustments to the CSD Pref'm had been made (e.g. code for

the top of the subroutine call box). This problem has been solved by routines which store

name and expression components in ever-increasingly deep binary trees instead of appending

them to the Line_Buffer. When the name is recognized by the parser, the adjustments are

made to the CSD_Prefix and only then is the name output to the Line_Buffer. _

There are certain limitations to this tool of which the user should be aware, most

involving the sizes of the data structures. Dynamic memory allocation was considered for

some of these structures; however, it seemed unconscionable to invoke memory allocation

routines for small lexemes. The size of the CSD_Prefix is fixed at 40 CSD Symbols, the

Line_Buffer at 160 bytes plus space for an integer value, and the stack of loop names is fixed

at 10 pointers to character strings. These sizes are hopefully large enough for any reasonable

application.

Another limitation to this tool is in the distinction between subprogram calls and

entry calls. Originally, different CSD diagrams had been planned for each, with the

subprogram call being enclosed in a rectangular box and the entry call being enclosed in a

slanted box. However, the grammar used did not distinguish the two in the general case

(although a distinct entry call production did exist with respect to the selective wait
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systemof symboltablesdueto theseparateandpreviouscompilationsof otherlibrary units)

which is simplynotpresentin thecurrenttool.
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4.4. User Interface

A major requirement specified for the CSD Generator was that it be easily

transportable to a variety of hardware environments. Upon reflection, this appears to be

difficult to achieve because the routines needed to display graphics are non-standard among

modern computer systems. Graphic routines range from the simple graphics supplied as part

of the original IBM PC character set, to the bit-mapped graphics of the Apple Macintosh, to

the PostScript graphic descriptions becoming popular among most laser printers and newer

computers such as the NEXT.

To solve this problem, GRASP/Ada includes a set of simple graphics primitives that

are necessary and sufficient to implement a simple graphical user interface. These primitives

include routines for producing lines, boxes, and other simple graphics on an 80 column, 24

line display device. The internal detail of each of these primitives must be rewritten for each

new environment, but the higher-level routines which call these primitives (and comprise the

bulk of the code) remain the same. Because the implementation language chosen for

GRASP/Ada is C, the alternative approach of using conditional compilation was briefly

considered, but since the coding of graphics routines for various computer systems varies to

such a great extent, the resulting code would have been more difficult to implement and

maintain. To achieve portability, it is much more efficient to factor out the

hardware-dependent operations and maintain separate graphics kernals for each.

One of the drawbacks to this approach is the increased overhead in drawing each of

the graphic symbols. Because many of the GRASP/Ada primitives duplicate library routines

provided by compilers on each of the host environments, the time required for on-screen

display of the CSD symbols is increased. However, this overhead is practically

indistinguishable in most cases, and the transportation benefits realized by taking this
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approach are felt to outweigh vastly this minor degradation of performance. Should better

performance ever become necessary, the GRASP/Ada primitives could be optimized for a

specific installation to remove this overhead.

The graphics primitives needed for the GRASP/Ada user interface include routines

tO:

• Draw boxes

• Clear the screen

: • Draw a window (making use of the box drawing and clear screen primitives)

• Clear a window

° Erase a window

• Get a keystroke (not a true graphics primitive, but needed for many I/O routines)

• Highlight text on the screen

• Dehighlight text on the screen

These routines were coded for the VAX 11/780 using the CURSES screen

management package. CURSES is a library of screen I/O routines originally developed

during the implementation of the vi editor. It consists of a simple set of graphics primitives

that work on a variety of terminals and display devices, including the VAX 11/780 and the

IBM PC. This means that the bulk of the GRASP/Ada system may be quickly ported to any

system that supports CURSES.

The kernal of CURSES routines was used in the definition of a user interface for the

GRASP/Ada system. The interface was crafted to be intuitive and simple. Two windows

form the basis for most of the GRASP/Ada screens. The first is the working window, in

which most of the user I/O occurs. This window is used to present menus and data entry

mats, and it is in this window that the user is allowed to choose between various option

settings. The second window is the help/status window, which is used to provide additional

information about the currently selected object in the working window. For example, the

user may be viewing an option for selecting how keywords are printed in the CSD. The

help/status window would then tell all of the options available to the user.

A simple I/O package was developed for the display of windows, buttons, menus,
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and text editing boxes. In the VAX 11/780 implementation, a window is actually

implemented as a CURSES window, with some enhancement. GRASP/Ada routines provide

the window with a custom border and name. Text editing boxes are framed strings which the

user may edit using the cursor keys and alphanumeric characters. Buttons are implemented as

text editing boxes with a default string which may not be edited. Menus are a group of

buttons with some added properties. Finally, a variation of the button class was developed in

which each button has a number of text strings associated with it. The user may toggle

_ between these text strings with the left and right cursor keys. This class is used to present

concisely options which have a finite and preset number of possible settings.

To remove the content of the GRASP/Ada menus and data entry mats from the

mechanisms which manipulate them, a menu data object was developed. A menu is an array

of Items which may be static (buttons, menu items) or editable (text edit strings). Each Item

has several parameters associated with it: the type (smile or editable), the screen coordinates,

the number of alternates for the item (used to implement the button class for setting options),

the currently selected alternate, and a pointer to the list of alternates. Each menu also has an

associated HelpList, which contains a text string of helpful information for each of the Items

in the menu. The menus and HelpLists are maintained separately from the main program and

may be edited without requiting the recompilation of the main program. This separation of

code and data allows the user interface to be modified rapidly without massive recompilation,

a technique learned from the Apple Macintosh and OS/2 operating system environments.

Two useful routines are included for dealing with menus and mats. The first is the

DrawMenuO routine, which prints a given menu or data entry mat in the working window.

The second is the DoMenuKeyO routine, which automates the menus and data entry mats.

This routine is called repeatedly in the main program. When the routine is invoked, it gets a

keystroke from the user and then determines if the keystroke is one that updates the menu or

data entry mat. DoMenuKey0 moves the cursor from button to button, highlighting and

dehighlighting them as necessary. If DoMenuKey0 moves the cursor into an editable text

box, it places the text editing cursor in the last known position and calls the ReadStringO

routine in the STRINGS package for doing simple text editing. The end result is that the user
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4.5. EVE editor enhancements

DEC supplies the source code for a text editor for the VAX 11/780 called EVE

(Extensible Vax Editor) that may be customized for end user applications. We decided to

utilize this editor for viewing the CSD on the VAX. To accomplish this, we added an

' initialization module written in TPU (Text Processing Utility, the language in which EVE is

written) that calls a C procedure for switching out the default screen font and replacing it with

the CSD font. We also added commands (implemented in TPU) which "cloak" and "decloak"

the CSD font so that the user may view the Ada code with or without the CSD. We plan to

add a collapse/expand utility that would allow the user to collapse an Ada program to a small

skeleton and then expand various sections as he follows the program's control flow. This

utility would be of great use in a reverse engineering and maintenance situation. The

equivalence of the CSD to a partial parse tree enables this utility to be feasible without

requiring reparsing of the source code. This feature has not yet been implemented.

S

4.6. Software tools

The physical output of the CSD to the screen and printer was best accomplished

using a specially-created font with characters corresponding to "slices" of the CSD

constructs. In creating the font, there was a tradeoff to be considered involving the type of

font to be created. Most commerical fonts fall into one of _wo categories: the bit-mapped

font, in which the characters are represented as an array of bits; and the outline-font, in

which the characters are represented using mathematical descriptions that comprise the

character outlines.

Bit-mapped fonts are generally easier to create for a given output device because of

their relative simplicity. In addition, bit-mapped fonts are generally optimal for use on

personal computers and graphics terminals because the routines for displaying them are
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highlyoptimized.Ontheother hand, a bit-mapped font is by definition created for use at one

size: rescaling the font to smaller or larger sizes is difficult and often leads to an undesirable

"jagginess" in the characters.

Outline fonts include the PostScript fonts popularized by Adobe and the new fonts

created by Apple using its own proprietary outline font technology. These fonts are generally

mathematical descriptions composed of Bezier splines which are translated by a PostScript

(or similar) interpreter. These fonts may be rescaled to very large or very small sizes without

• losing any degree of resolution. However, the fonts are much harder to create, and typically

ale much slower for use in screen displays (witness the relative lack of Display Postscript

devices).

For the CSD generator, the bit-mapped font was favored for several reasons. First,

the equipment available at Auburn University does not include any screen devices that are

capable of utilizing outline fonts, so going this route would have required the purchase or

lease of additional hardware. Second, because bit-mapped fonts are relatively easy to

generate for any given hardware environment, it was decided that it would not be difficult to

produce the CSD for a variety of hardware environments. To this end, a "shell" font

generator was created which could be quickly customized to produce fonts for any machine.

Although there are commercial font generators available for various machines (such

as the IBM PC and the Apple Macintosh), we decided to create our own. By so doing, we

gained a tool that could be quickly modified and customized for our own purposes, and

perhaps later, even integrated into the CSD generator environment. In addition, creating a

custom font generator that is reconfigurable for varying hardware environments enables us to

present a consistent user interface for the software engineer porting the CSD.

The "shell" font generator was written for the Apple Macintosh in Turbo Pascal.

Although the font generator is pot a complete Macintosh application (i.e., resizable windows,

cut & paste are not supported), it does present a graphical tool for the quick and efficient

generation of custom fonts. The user is greeted with a rectangular grid (the dimensions of

which may be quickly modified) corresponding to the dimensions of the desired font. By

pointing and clicking on selected rectangles, a new character may be easily defined. Options
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areincludedfor savingthecharactersastheyarecreatedin two formats:agraphicalformat,

for laterediting;andatextualformat,typicallyoneor morelinesof codethatdescribehowto

downloadthecharacterinto thetargetedterminalor PC.Theprogramis modular,andafont

generatormay be definedby simply specifying the dimensionsof the desired font and

writing asmallcodegenerationroutine(oftenlessthan100linesof code).

At the presenttime, we have createdfont generatorsfor the VT220 seriesof

terminals,theLN03Slaserprinter,andtheHPLaserJetlaserprinter.A font generatorfor the

• PanasonicKX-P1093 dot matrix printer is planned, but not yet implemented. We have used

these font generators to create complete fonts for each of these output devices. During the

daily use of these generators, it was found that an accessory program was desired to facilitate

the collection of the font characters for upload to the VAX environment. A small "make"

program was written, again in Turbo Pascal, which reads in a file of character names and

loads the appropriate code fragments, along with appropriate device control sequences to

create a complete font file.
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- 5.0. Examples of Output

L

In this chapter, we present some examples of Ada source code that have been

processed with the GRASP/Ada CSD generator. These examples demonstrate how the CSD

constructs appear in "real" source code. The three examples in this chapter were taken as is

from code written by Mr. Wenkai Chung of Auburn University in partial fulfillment of his

Ph.D. degree in Computer Science and Engineering. The examples were chosen to reflect

the Group I, II,and HI CSD constructs, respectively.

The first example, COMPLEX_NUMBER_PACKAGE.LN3, is a package of Ada

routines for handling complex numbers. The example is fairly object-oriented, using a

complex number type and providing a set of functions for manipulating objects of that type.

This example is used to demonstrate the Group I CSD constructs.

The second example, INTERFACEJ.2V3, is an Ada task that provides a simple user

interface to a program that parses Prolog programs and builds a symbol table in preparation

for later use by an AI program. This example primarily demonstrates the Group II CSD

constructs for exception handling.

The third example, BUFFERS.LN3, is an Ada packagethat provides a simple

buffeting mechanism. The example was adapted from Programming in Ada by J.G.P.

Barnes. This example demonstrates several of the Group III CSD constructs for tasking.

In the following sections, each of these examples is presented in greater detail with

emphasis on individual CSD constructs. The source code listings for the examples have been

concatenated to provide unique line numbers for the discussion of the three examples.

5.1. Example I - Complex Numbers

M The Ada compilation unit COMPLEX_NUMBER_PACKAGEJ_aV3 demonstrates a

number of functions and procedures for manipulating complex numbers. This example

demonstrates several Group I CSD constructs, including the procedure, package, sequence,

and selection constructs. Let us examine these constructs in greater detail:
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• Procedure

Lines 5-37 demonstrate how the CSD constructs clearly identify 8 functions and

procedures in the package. Each function header is surrounded by a half box that provides a

very easily seen visual directory to the contents of the package.

Lines 51-73 show the scope of a private function belonging to the package. The

CSD control line leading down from the function header serves as a graphic aid in quickly

determining the scope of the package. Although this function has a single entry point, it has

twO exits which are clearly indicated by arrows.

Lines 74-83 show the body of one of a number of the functions declared in the

package specification. Notice how the CSD visually breaks the code in lines 74-167 into

aesthetically pleasing and readily seen components.

• Package

Lines 1-3 and lines 48-50 show the CSD constructs that mark an Ada package. The

CSD symbol for a package is a procedure box embedded in another box; this reinforces the

image that a package is a collection of procedures and ftmcdons. The scope of the package

may be easily followed using the CSD main control line that extends from the bottom of the

package header.

• Sequence

Lines 77-83 show an example of a CSD sequence construct. The main control line

extending from lines 77 to 83 shows the scope of the sequence. The horizontal control lines

in lines 80, 81, and 82 show individual statements within the sequence.

• Iteration

In lines 61-66, an example of a sequence of statements in a loop is presented. The

CSD clearly points out the various statements in the sequence, and although the code is

spread over two pages, the CSD clearly depicts the boundaries of the loop.
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• Selection

Lines 60-72 show an example of a CSD selection construct. The condition

associatedwith theconstructis shownin line 60, asnotedby thediamondon thesequence

control line. Because the diamond is the symbol widely used in flowcharting for showing

conditions, it has been retained in the CSD for immediate recognition. The TRUE branch is

shown by the solid CSD control line extending from the right of the diamond downward.

Additional horizontal control lines denote the statements that will be executed when the

condition is true. The FALSE (or ELSE) branch is shown by the dotted line extending from

the bottom of the diamond downward. If there are no statements to be executed when the

condition is false, the line simply ends. If there is an ELSE clause to the selection statement,

a solid vertical CSD control line and appropriate horizontal control lines are used to indicate

the ELSE body.

5.2. Example 2 - User Interface

INTERFACE.LN3 is an Ada unit containing a task that provides a simple user

interface to a system written by Wenkai Chung of Auburn. This interface demonstrates the

Group II CSD constructs for raising exceptions and for exception handling.

• Raise

Line 356 shows an example of an exception being raised. Notice how this is marked

by an arrow breaking through the main CSD control line, indicating that the program is

exiting its normal flow of control.

• Exception handler

Lines 413-444 show the CSD constuct for an exception handler. The handler is

represented similarly to a procedure or function, the idea being that the exception handler

represents an "emergency" procedure that is invoked when the executing program finds itself
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in asituationthatit cannotproperlyhandle.Theexceptionsthatmaybehandledaremarked

by diamonds,asseenin lines416and439.Andafteranexceptionis handled,controlpasses

outof theprocedurewhichcontainsthehandlerasseenin lines443-445.

w

5.3. Example 3 - Buffers

BUFFERSJAV3 is an Ada package found in Programming in Ada by J.G.P. Barnes

and modified by Wenkai Chung. The package presents a simple buffering mechanism that

may be used by other programs, and will be used to demonstrate several Group III

constructs, including the task specification, rendezvous, terminate, and select.

m

• Task specification

A task type is declared in lines 465-470. Notice that the task type header is delimited

using a half box with a slanted side. It is similar to the construct used for procedures, with

the slanted side suggesting that the task is dynamic rather than static and may only exist for a

portion of the lifetime of the program. Lines 476-512 show the CSD construct for a task

body.

m

H

L

l

• Rendezvous

Task rendezvouses are shown in lines 486-488 and lines 496-498. Rendezvouses

may be considered as communication with code outside the scope of the task, so they are

represented in the CSD using arrows that cross the major control line of the task. This

signifies that the flow of control effectively enters the task-(as shown by the right arrow,

lines 486 and 496) and then leaves the task after executing the statements in the accept

statement (as shown by the left arrow, lines 488 and 498).

• Terminate

The terminate CSD construct is shown in line 507. A terminate command ends the

task in which it is embedded, so this may be thought of as a termination of the flow of
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controlof the task.This is visualizedin theCSDby anarrowleaving themajor controlline

of thetask.

• Select

A selectconstructis shownin lines484-510.The variousalternativesthatmay be

selectedareshownby circleson themaincontrol line of theselectconstruct.Filled circles

indicate guardedalternatives(lines 485 and 495) and hollow circles indicate unguarded

' alternatives(line 505).
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Ipackage complex_number_package is

type complex_number_type is private ;

I function "-" (right :complex_number_type) returncomplex_number_type ;

I function "+" (left, right:complex_number_type) returncomplex_number_type ;

I function "-" (left, right:complex_number_type) returncomplex_number type ;

I function "*" (left, right:complex_number_type) returncomplex_number_type ;

I function "/" (left, right:complex_number_type) returncomplex_number_type ;

I function "abs" (right :complex_number_type) returnfloat ;

I function to complex(real part, imaginary_part:float)return complex_number_type ;

procedure to float(complex number: in

complex_number_type; real_part, imaglnary_part:out

float) ;

private

type complex_number_type is
record

real number : float;

imagYnary_number : float;
end record ;

end complex_number_package ;

Ipackage body complex_number_package is

I function square_root (square:float) return float is

I guess:float :- square / 2.0;previous_proximity:float :w abs (square - guess**2

80



L_

u

w

w

w

w

*** GRASP/ADA VI.0 File: chapter5.1n3 Page: 2

56)

57)
58)
59)
60)
61)

62)

63)

64)

65)
66)

67)

68)

69)

70)

71)

72)

73)

74)

75)
76)

77)

78)
79)

8O)
81)
82)
83)
84)
85)
86)
87)
88)
89)
9O)
91)

92)

93)

94)

95)
96)

97)

98)
99)

100)
101)
102)
103)

104)

105)
106)

107)

108)
109)

110)

);

proximity:float;

imaginary_root_error :
begin

J

exception;

if square >- 0.0 then

guess :- (guess / square / guess) / 2.0;

proximity :- abs (square - guess**2);

exit when proximity >- previous proximity;

previous proximity :- proximity?

loop ; -

__ return guess;

helse

[---- raise imaginary_root_error;

L end if ;

end square root ;

function "-" (right:complex_number_type) return

complex_number_type is

t : complex_number_type;
begin

-- t.real number :- -rlght.real number;

-- t.imagTnary_number :- -right?imaglnary_number;
return t;

end "-" ;

function "+" (left, right:complex_number_type) return

complex_number_type is

t : complex_number_type;
begin

m t.real number :- left.real number + right.
real number;

-- t.imagiSary_number :- left.imaglnary_number + right

.imaginary_number;
return t;

end "+" ;

function "-" (left, right:complex_number_type) return

complex_number_type is

t : complex_number_type;

begin

m t.real number :- left.real number - right.
real number;

t.imaginary_number :- left.imaginary_number - right
.imaginary_number;

return t;

end "-" ;

I function "*" (left, right:complex number type) returncomplex_number_type is - -
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t : complex_number_type;

begin
m t.real number := left.real number * right.

reaY number * left.imagYnary_number * right.

imagYnary_number;

m t.imaginary_number := left.real number * right.
imaginary number * left.imagYnary_number * right

.real numSer;

return t;

end "* " ;

function "/" (left, right:complex_number_type) return

complex_number_type is

t : complex number type;

divide constant : _loat :_ right.real number**2 +

rigKt.imaginary_number**2;

begin

__ t.real number := (left.real number * right.

rea[ number * left.imaginary_number * right.

imagYnary_number) / divide constant;

-- t.imaginary_number := (left.real number * right.

imaginary number * left.imaginary number * right

.real_numSer) / divide_constant; -
return t;

end "/" ;

function "abs" (right:complex_number_type) return
float is

t : float;

begin

-- t :- square_root(right.real_number**2 + right.

imaginary_number**2);
-- return t;

end "abs" ;

function to complex(real_part, imaglnary_part:float)

return complex_number_type is

t : complex_number_type;

begin

-- t.real number := real_part;

__ t.imagYnary_number :- imaginary_part;

return t;

end to_complex ;

procedure to float(complex number: in

complex_number_type; real_part, imaginary_part:out

float) is

begin
N real part :- complex number.real number;

-- imagYnary_part := complex_number?imaginary_number;

w
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_e Lend to_float ;

nd complex_number package ;

task INTERFACE is

entry START;

entry REPORT (M: MESSAGE);
end INTERFACE;

with TEXT IO, INTEGER TEXT IO;

use TEXT YO, INTEGER TEXT YO;

separateTMAIN)

task body INTERFACE is

PFILE: FILE TYPE;

PROGFILE: STRING(I..32);

PARSING ERROR: exception;

-- GET TOKEN uses the following:

STMT: STRING(I..72);

-- current program statement

CURRENT, LAST: NATURAL;

-- indexes on STMT

WORD: TOKEN;

PRED: PRED ID;

ARITY: NATURAL;

MODE: MODE PT;

CL: CLAUSE;

PROCESSOR: PE ID;

GOAL: ATOM;

SEND, RECEIVE: MESSAGE;

I procedure GET_TOKEN is separate;

I procedure READ MODE(PRED: out PRED ID; ARITY: outNATURAL; MODE: out MODE_PT) IF separate;

I function NEXT_ATOM return ATOM
is separate;

function NEXT_CLAUSE return CLAUSE
is separate;

-- show user the variable bindings

procedure SHOW_USER is

QUERY, ANSWER: ARG_PT;

TI, TO: TERM;

begin

-- QUERY := SEND.GOAL.ARGS;

--ANSWER := RECEIVE.GOAL.ARGS;

--_while QUERY /= NULL ARG PT loop

TI := GET_ARG(QUERY)?
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!__ TO := GET ARG(ANSWER);

-O if IS_VARTTI) then
i

! ---_ PUT(VAR TABLE.GET ITEM(TI).STR);
E, !

i
! --]PUT(" = ");
_ -

PUT LINE(CONST TABLE.GET_ITEM(TO).STR);

_ else

j _PUT(" ");

i
i

_ PUT(INTEGER(TO));

---tNEW_LINE;

[ end if;

L end if;

e_ndQUERY NEXT ARG(QUERY);
ANSWER :- NEX__ARG(ANSWER);

loop;

er [ SHOW_USER;

-- stop all nodes and channels

procedure STOP_ALL is

begin
_ for I in PE ID range I..PE_ID'LAST loop

--//abort PEII);

ort EX(I);

end loop;

e_ STOP ALL;

begin

.--_/accept START;

_ PUT LINE(" ..... Knowledge-Based Parallel Prolog7;

__NEW_LINE(2);
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I

_ PUT LINE(" The file name of the Prolog program is ..."7;

-- GET LINE (PROGFILE,LAST);

-- --Putting in the literal name of T.PRO temporaril

----y

-- progfile(l..5) :- "T.PRO";

--last := 5;

_ OPEN(PFILE,IN_FILE,PROGFILE);

_ SET_INPUT(PFILE);

_ GET_LINE(STMT,LAST);

-- CURRENT :2 i;

loop

;ET TOKEN;

if WORD.LEN _ 0 then

-- null token
| exit;

|

elsif WORD.STR(I..4) - "mode" then

IHREAD MODE(PRED,ARITY,MODE);i -

_for I in PE ID range I..PE ID'LAST loop

!I a - _

i PE(I).INFORM(PRED,ARITY,PROCESSOR,MODE);

i

loop;

else

-- CL := NEXT CLAUSE;
-- PROCESSOR _= ALLOCATION.GET NODE(CL.HEAD.PRED);

_ PE(PROCESSOR).ALLOCATE(CL);

L end if;

end loop;

_ PUT_LINE(" Program Consulted; No

H SET_INPUT(STANDARD_INPUT);

Syntax errors.");
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_ NEW_LINE;

_ PUT LINE(" ..... Parallel Query Execution Starts ..1.ffi,'T;

_ NEW_LINE;

_ PUT_LINE(" Type CNTL/Z to quit.");

_ PUT("?-") ;

-_ GET_TOKEN;

-- GOAL :I NEXT ATOM;

--tGET_TOKEN;

WORD.STR(1) /1 ,., then

raise PARSING_ERROR;

Lend if;

_---PROCESSOR :1 ALLOCATION.GET__NODE(GOAL.PRED);

-- SEND.PE :1 0;

-- SEND.ID :- l;

-- SEND.CM :1 REQUEST;

SEND.GOAL :1 GOAL;

-- SEND.NO_VAR :- VAR_TABLE.NUMBERS;

loop

PE(PROCESSOR).INTERACT(SEND);

REPORT(M: MESSAGE) do

RECEIVE :1 M;

COPY(M.GOAL,RECEIVE.GOAL);

end REPORT;
if RECEIVE.CM = SUCCESS then

if SEND.NO VAR - 0 then

PUT LINE(" yes") ;

exit;

 e?°i
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I i_ SHOW_USER;t end if;

else

-- receive a report of failure

H PUT__LINE(" no");

--exit;

end if;

GET TOKEN;

if WORD.STR(1) - ';' then

SEND.CM := REDO;

:_else

_exit;

[ end if;

end loop;

_ STOP_ALL;

exception

-_. when PARSING_ERROR ->

--_ PUT LINE("PARSING ERROR DETECTED");
i
|

--_ PUT__LINE("THE CURRENT PROGRAM STATEMENT IS");

--_ PUT("'");

--_ PUT_LINE(STMT(1..CURRENT));

--_ PUT(STMT(CURRENT + 1..LAST));

--_ PUT LINE("'");

. --_ STOP_ALL;

when others ->
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n INTERFACE ;

generic

-- From: J.G.P. Barnes, "Programming in Ada"
N: POSITIVE;

-- pp. 249-250, with slight modification.

type ITEM is private;

package BUFFERS is

type BUFFER is limited private;

I procedure PUT(B: in out BUFFER; X:
in ITEM);

I procedure GET(B:

private

ask type CONTROL is

le entry PUT(X: in ITEM);entry GET(X: out ITEM);
nd CONTROL;

type BUFFER is new CONTROL;

end BUFFERS;

in out BUFFER; X: out ITEM);

Ipackage body BUFFERS is

task body CONTROL is

I A: array(l..N) of ITEM;

I,J: INTEGER range I..N :- i;

COUNT: INTEGER range 0..N :- 0;

begin

select

when COUNT < N=>

-/accept PUT(X: in ITEM) do

_--- A(I) := X;

[end PUT;

-- I := (I mod N) + i;

-- COUNT := COUNT + i;
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-_ Ii i __/aooeptOET,x"ootITEM'_o
II i Lend GET;

II i--o :- (omod N) + 1;
II _ -- COUNT : COUNT - i;

II.!_

I II L end select;

I Uend loop;
Lend CONTROL ;

procedure PUT(B:

begin

__ B.PUT(X);

end PUT;

procedure GET(B:

begin

__ B.GET(X);

_nd;

end BUFFERS;

in out BUFFER; X: in ITEM) is

in out BUFFER; X: out ITEM) is
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6.0 Future Directions

The previous sections have presented the f'u'st phase of the GRASP/Ada research

project. In this section, we briefly describe the future directions in which this project may

evolve. The original motivation for the GRASP/Ada research project was to develop a

graphic.al specification for Ada that would be useful at each level of program development:

the process level (system diagrams), the structural level (structure charts) and the

algorithmic level (control structure diagrams). The direction taken in the research was to

approach the problem as one of reverse engineering. Beginning with Ada source code,

algorithmic diagrams (the CSD) were proposed and modified in such a way that they could

be derived automatically from the code with no intervention from the user. In the next

phases of the GRASP/Ada project, this approach is to be taken a step farther, leading to the

automated p_xiuction of structure charts and system diagrams from the source code.

To achieve this, a set of graphical representations that support Ada at the system

and architectural levels in much the same way that the CSD supports Ada at the procedural

level must be developed and or adapted from existing diagrams. Natural candidates for

these graphical representations are the data flow diagram for the system level and the

structure chart and object diagram for the architectural level. Although these diagrams have

been heavily discussed in the literature, each is generally too informal for reverse

engineering, and must be developed and formalized to be of use. As the diagrams are

formalized, the feasibility of automatically generating them from source code will be

evaluated.

Once automatic generation of these graphical representations is determined to be

feasible, a software tool for generating and displaying them will be designed and

implemented. In Phase I, a software tool for producing the CSD was designed and

implemented in the form of a prototype. Similar tools would be developed for the data

flow diagram and structure chart, perhaps with a driver that automates the production and

layout of the generated design documentation.
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Since the GRASP/Ada research project has focused specifically on the Ada

programming language, extensions to the graphical representations that deal with

Ada-specific constructs such as tasking and exception handling will be addressed. A

graphical representation of the package/object view of Ada software may prove useful for

illustrating the data types and operations of an Ada package as well as for depicting the

dependencies among various packages. This is especially true in view of the current trend

toward object oriented design.

Finally, the application of artificial intelligence (AI) and expert systems to software

engineering will be investigated with respect to the GRASP/Ada research project. Expert

systems may prove invaluable in creating the structure and system representations,

particularly for classifying the Ada source code into groups that correspond to the

components of these graphical representations and for laying out these diagrams in a clear

and meaningful fashion.
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I. INTRODUCTION

- i

Graphical representations for algorithms (GRAs) have

been available to practitioners as comprehension aids since

the introduction of the flowchart in 1947 by Goldstein and

Von Neumann. Since then, many others (Figure i) have

followed including the Nassi-Shneiderman chart (Nassi and

Shneiderman 1973), the Warnier-Orr diagram (Orr 1977), the

action diagram (Martin and McClure 1985), and the control

structure diagram (Cross 1988). Tripp (1988) provides a

concise survey of 18 additional GRAs introduced since 1977.

The use of GRAs has experienced somewhat of a revival due to

the availability of high-density, bit-mapped graphics. As a

result, GRAs are making their way into computer-aided

software engineering (CASE) tools.
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Figure i. Control Constructs for Some Algorithmic Diagrams.
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Various empirical studies have been conducted to

determine the effectiveness of GRAs on the process of

comprehension. Unfortunately, most of these studies have

focused only on the flowchart and have produced mixed

results about its effectiveness. Several conclusions can be

drawn from these studies: (i) a picture with text may be

more useful than text alone, (2) the flowchart may have use

in non-programming applications such as the use of a correct

flowchart in procedural tasks, but its use in programming

applications is questioned, (3) in programming applications

the utility of the flowchart may depend upon the task in

which it is used and the particular_strategy employed and

(4) more empirical research is needed to determine the

effectiveness of the other graphical notations.

It would be beneficial to both designers and users of

software tools to know which, if any, of the graphical

representations is the most easily comprehended. In

particular, a comprehensive study of this nature would

provide developers and users of CASE tools, which rely

heavily on graphical representations of software, an

empirical basis for the selection of these notations.

Professional programmers and students who use control flow

diagrams in their work would benefit in using a graphical

representation which had been shown by empirical research

to enhance understanding. Finally, since maintenance

consumes up to 70% to 90% of the total life cycle cost of

AI-3
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software and 50% to 90% of maintenance is understanding the

software, the cost of understanding the code could very well

be the single most expensive part of the entire software

life cycle (Standish 1984). Thus, the use of a tool that

has been shown to reduce the time required for comprehension

of software could have a significant impact on its overall

cost. Any empirical research seeking to find notations

which can minimize the cost of understanding software is

both necessary and cost-effective.

An empirical study has been completed which compared

the comprehensibility, efficiency, and user preference of

the conventional flowchart and the control structure diagram

(CSD). Pseudocode, a representation which is synonymous

with programldesign language (PDL) or structured English

(Pressman 1987), was included in the study to provide a

baseline for comparison (Figure 2). Though non-graphical in

nature, it will be referred to as a GRA for simplicity in

this text, since the three are to be compared in the same

manner.
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-- Read (ch)

WHILE not EOF and not (ch in ['A 'Z'])

-- Road (ch)

_ IF not EOF
ct-1

I WHILE not EOF and (ch in rA 'Z'])

IF ¢t <- wordsize

I }-- word[cq - ch

i L.--ct-ct +'

-- read (ch}

HILE ct<- wordsize

word [ct]- ' '

ct - ct +1

I r " r

F

F

T

F

1°-°.,1

Procedure G E33NORD

8EGJN

Read (ch);

DO WHILE not EOF and not (ch in ['A'..'Z'])
Read (ch);

ENDDO

IF not EOF

THEN BEGIN

ct-1;

DO WHILE net EOF and (ch in J'A Z'])
IF cl <- wordsize

THEN BEGIN

word[ct]-ch;

cl-ct +1;
END

ENDIF

read(ch};
ENDO0

DO WHILE ct <- wordslze

word[cl]-' ";

ct-ct + I;
ENDDO

END

ENDIF

J

Figure , Comparative Diagram of the

Diagram (CSD), Pseudocode

Flowchart.

Control Structure

(PDL), and the
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II. STATEMENT OF THE PROBLEM

Research Theory and Thesis

The research theory revolved predominantly around the

comprehension portion of the project. It was surmised that

the comprehension of a program involves an iterative cycle

of expectation and hypothesis of its function, revision of

the hypothesis, then verification of this hypothesis. This

is all accomplished through close scrutiny of the code.

Aiding in this cyclical process are beacons, or key lines in

the code, which act as clues to the function of the program.

Also aiding this process is the inclusion of keywords,

lines, meaningful shapes, white space, and indentation,

which all contribute to the combining of the program into

functional chunks. The main proposal of this study is that

the comprehensibility and readability of a GRA are directly

linked to how well the GRA aids the chunking process_

Pseudocode (PDL) has unique characteristics:

indentations, a concise, linear format much like code, and

capitalized keywords, which contribute to its readability.

The flowchart is unique with its graphical symbols which

clearly show looping and branching, but it is believed that

the flowchart could be less comprehensible than PDL because

6
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of the space it requires. While nested loops in PDL can be

indented to the right and down in a linear fashion, similar

loops and branches in the flowchart can extend in four

directions and thus have the potential for causing confusion

to the reader when the drawing is continued on a separate

page. It was proposed that the CSD would be the most

comprehensible of the three notations because it

incorporates the linear, textual structure of the PDL which

is compact and concise, and easily extends to another page,

as well as the graphical nature of the flowchart. The CSD

contains special symbols which represent certain constructs

in the program; these symbols are similar to the flowchart

but are uniform in size so require less room than the

flowchart symbolS. Also, the CSD extends down and to the

right as does PDL, and doesn't require the two-dimensional

space needed for the flowchart. Finally, the CSD exploits

redundancy since it uses both graphical and textual formats,

which would benefit both left and right-brained individuals.

It was also proposed that the CSD and PDL would be the

most preferred notations, for the same reasons cited above.

It was predicted that users would prefer these notations

over the flowchart since they are both linear and top-down

in nature, and translate into code more readily.

Thus, the main purpose of the research was to discover

which of the three notations: the CSD, conventional

flowchart, and pseudocode (PDL) best aids in the chunking

AI-7
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process, a process which translates into understanding of

the program. This was measured by a comprehension test,

where each subject was shown three algorithms in one of the

three notations and answered questions about the function of

the algorithms. This measured accuracy of the notations.

Also measured was the efficiency of the notations, that is,

the extent to which the notation expedited understanding.

This was measured by the response time the subjects used to

answer the questions and thus all questions were timed.

Finally, preference for the notations was measured by means

of a short preference survey, where the subject rated the

three notations for use in specific tasks.

Go_Is of the Research

There were four basic goals and associated tasks in

this research project. The first was to determine which, if

any, of pseudocode (PDL), the conventional flowchart, or the

CSD was the most easily comprehended and useful as a

debugging aid by novice programmers (less than a year of

programming experience), intermediate programmers (one to

three years experience), and advanced programmers (three to

five years of programming experience). Two measures were

observed: efficiency and accuracy of the responses. If the

PDL was found to be the most comprehensible, then perhaps

the utility of diagrammatical notations in general needs to

be reevaluated. If either of the graphically oriented

AI-8
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notations were shown to be more comprehensible, there will

be obvious implications for both the computer education

community and the professional software community.

The second objective was to determine if there was any

difference between the three experience groups in levels of

comprehension of the three notations. Novice programmers

have not yet attained the skills necessary to efficiently

debug or modify a program. It was believed valuable to

determine the difference in the error rate between the

novice, intermediate , and advanced programmer groups and

note the differences across all three notations. Perhaps it

would be found that one representation is more easily

comprehended by the intermediate and advanced levels but is

a hindrance to novices.

The third goal was to observe how each experience level

scored in accuracy and efficiency for each of the two types

of programming tasks: debugging and general comprehension.

The first group of questions in the comprehension section

were concentrated on the discovery of bugs in the

algorithms; the rest were general flow of control questions.

Perhaps one notation would result in better scores on the

debugging questions than the others, while another notation

would improve general comprehension. These are two

programmer tasks which require separate observation.

The next goal was to find the preferred diagrammatical

notation between the novice, intermediate, and advanced

AI-9
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groups, via a preference survey. It was valuable to

determine which notation was the most preferred, since this

notation would be the one most readily used by programmers.

Preference was measured in terms of the task for which the

notation was to be used, as subjects may have preferred to

use one notation for one purpose, but another for a

different purpose.

Finally, the preference data and the

accuracy/efficiency data were compared. Perhaps the most

preferred notation was also the most useful.

W
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III. THE PROJECT

=

The Automated Instruments

Each subject from a sample of students was given a

brief automated summary on the use of one of the notations,

followed by an automated test (approximately 70 minutes).

This was implemented on IBM-compatible personal computers

and required an enhanced graphics adapter (EGA) card, at

least 360K RAM memory, and two megabytes of hard disk space.

The test contained three aigorithms, each representing three

difficulty levels: easy, moderate, and difficult. Each test

represented the three algorithms in one of .the following

formats: the conventional flowchart, the control structure

diagram (CSD), or pseudocode (PDL). Thus, a given subject

observed the three algorithms in one graphical format, a

repeated-measures experimental design. The order of all

three was randomized among subjects seeing a certain

notation. Each algorithm had a number of bugs seeded in it

and the subject was to determine the exact nature and

location of the bugs. Questions about flow of control

followed. All questions were multiple-choice with five

candidate responses and each question/response was timed.

Following the comprehension test, there was a short

ii
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preference survey which included a brief explanation of the

other two notations and how they show sequence, selection,

and iteration. The subject was asked to select and rate

which of the notations he would prefer to use in a number of

programming situations. Throughout the session, the subject

was given explicit instructions for taking the test. Except

for the beginning section which queried the subject for

background information, all parts of the instrument were in

graphics mode. There were three instruments, one for each

graphical representation. Each was written in Turbo Pascal'

with support for the drawings provided by the Turbo Pascal

Graphix Toolbox. Statistical tests were conducted on all the

data to determine the significance of the results.

The Subjects

A total of 154 students were tested for this

experiment: 22 were tested for the preliminary study, 132

for the main study. One hundred and twenty-nine were Auburn

students enrolled in the computer science and engineering

department; 15 more were enrolled in Auburn's chemical

engineering department, and i0 were from Clemson University.

Because the instrument required that all subjects have

Pascal knowledge, many of the novice programmers had to be

tested at the end of the quarter to ensure that they would

_- _- i Turbo Pascal is a registered trademark of Borland

International.
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have the experience needed to participate in the experiment.

Three levels of experience among the students were

chosen, the same ones recommended by Shneiderman (1976b):

novice programmers (less than one year of programming

experience), intermediateprogrammers (i to 3 years of

experience) and advanced programmers (more than 3 years of

experience). The subjects were acquired with the help of

faculty in 14 courses offered in the computer science and

engineering departments at Auburn and Clemson, and one

course in the chemical engineering department.

The novice programmers (mostly sophomores) came from

beginning Pascal or PL/I courses (Pascal is a prerequisite

to the PL/I course at Auburn). The intermediate programmers

were students in the data structures, software engineering,

and algorithms courses. Advanced programmers (mostly

seniors) came from the artificial intelligence, C

programming, and compiler courses.

The sessions were somewhat long in that they ranged

from 60-90 minutes in length. Any subject was stopped after

he had been tested for 90 minutes, whether he was finished

or not. Data which was not gathered beyond this time Was

later changed to a '.' value so that SAS would read it as

missing data.

AI-13
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The Experiment

After some refinements to the instruments, the

preliminary study was conducted. Twenty-two novice

programmers from the PL/I course were tested in March, 1989

in the Haley Center microcomputer laboratory at Auburn

University. Afterwards, each subject was asked to fill out

an evaluation of the instrument by noting its strengths and

weaknesses with respect to the clarity of instructions,

readability of the drawings and text, readability and logic

of the questions, ease of use of the keys to input choices,

etc. Minor changes were made to the instrument before

commencing with the main study. 7

A sample size of 137 was determined from a formula for

case I research for one-tailed tests (R.L. Shavelson, 1988).

The main study began on April, 1989 and ran through July,

1989. This study consisted of testing 132 students: 56

novices, 33 intermediates, and 43 advanced student

programmers. Testing was conducted at Auburn's Haley Center

and Tichenor PC laboratories, and Clemson University. In

this study, testing of two novice classes was delayed until

the last day of the quarter so that they would have enough

experience and knowledge to participate. It was felt that

the longer the wait before testing them, the closer they

would be in ability to the novices in the PL/I classes.

= w
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IV. STATISTICS AND RESULTS

The Results of the Comprehension Test

L

Overall GRA Accuracy

and Efficiency

Because the data contained missing values, a PROC GLM

(as opposed to a MANOVA) was conducted to see if there was a

significant difference in GRAs with respect to accuracy, a

variable used to measure comprehensibility and readability,

and efficiency of response times. A tail probability of

0.05 was used as the cutoff point, so values less than 0.05

would indicate a difference in GRA populations. Table 1

shows that there was no significant difference (p<0.1671)

between GRAs in accuracy for the entire data set.

u

i

15
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Table i.

16

Overall Mean Accuracy (Number of
Answers Correct for All Three Algorithms)
the Entire Data Set.

for

n=48 n=42 n=42 Tail GRA
CSD FC PDL Prob. Favored

mean

accuracy 8.83 9.50 10.26 0.1671 none

Likewise, there was no significant difference

(p<0.2824) in efficiency between the GRAs, shown in Table 2.

L

Table 2. Overall Mean Efficiency (Response Time in Minutes

for All Three Algorithms) for the Entire Data Set.

n=48 n=42 n=42 Tail GRA

CSD FC PDL Prob. Favored

mean

efficiency 51.24 56.52 55.93 0.2824 nolle

L

m

m

A PROC GLM was run again, this time observing the

accuracy and efficiency of the GRAs for each subject

experience level. In this case, some differences emerged,

as shown in Table 3. For the advanced subjects, accuracy

scores were significantly better (p<0.0207) for the

flowchart and PDL, indicated by Duncan's Multiple-Range

Test. The Duncan test also detected a difference in tile

mmm
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novice accuracy scores, which favored PDL and the CSD.

Although the tail probability was p<0.0831, this was an

indication that a difference could emerge if a larger

sample size of novices was tested. There was no difference

among intermediate subjects.

Table 3. Overall Mean Accuracy (Number of
Answers Correct for all Three
Algorithms) by Experience Level.

Novices (56)
Intermed. (33)
Advanced (43)

Tail GRA
CSD FC PDL Prob. Favored

7.50 6.76 8.95 0.0831 none

9.75 10.78 9.67 0.7563 none

9.81 11.69 13.18 0.0207 PDL, FC

There was a strong difference in efficiency (Table 4)

for the novices (p<0.0149). A Duncan test favored the CSD

in efficiency, as the reponse times in minutes were much

lower for the CSD than for the other two GRAs (keep in mind

that lower response times are favorable). There was 11o

difference in efficiency for the intermediate and advanced

groups.
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Overall Mean Efficiency (Response Time in Minutes

for All Three Algorithms) by Experience Level.

Tail GRA

CSD FC PDL Prob. Favored

Novices (56) 41.40 53.32 56.47 0.0149 CSD

Intermed. (33) 56.76 52.42 50.33 0.6900 none

Advanced (43) 59.40 62.23 61.13 0.8705 none

?

I

I

i

i

w

i

Accuracy and Efficiency

of the Alqorithms

Accuracy

Since one of the big problems of composing a

comprehension test of this nature is in the selection of the

algorithms to use, there was concern about how they fared in

accuracy and efficiency. Figure 3 shows the overall mean

accuracy for each algorithm. Fortunately, the means show

the desired trend: the easy algorithm had the best scores,

while the difficult had the worst. The mean for the

moderate algorithm indicated that it was perhaps too

difficult, as it rivalled the mean for the difficult one.

Figure 4 looks at overall mean accuracy of the GRAs

with respect to the algorithms. There was one significant

difference in the GRAs; for tl_e easy algorithm, accuracy

scores were better for the flowchart and PDL. This is

substantiated by the tail probabilities in Table 5. It is

interesting to note that while the flowchart had the highest
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Figure 3.

t0---

Mean

Answers
Correct
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4.70

I t I
Easy Moderate Difficult

Algorithm

Overall Mean Accuracy, by Algorithm,

Entire Data Set.

for the

accuracy scores on the easy algorithm, it had the lowest GRA

scores (though not significantly lower) on the moderate and

difficult algorithms.

z
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CSD FC PDL

[--7 Easy
GRA

Modorate

BB
Difficult

Figure 4. Overall Mean Accuracy (Number of Answers Correct),

by GRA and Algorithm, for the Entire Data Set.

Table 5. Probability of Accepting Ho, That the GRAs Do

Not Differ in Accuracy, by Algorithm, for the
Entire Data Set.

i

w

Tail GRA

Prob. Favored

Easy 0.0414 FC and PDL

Moderate 0.6561 none

Difficult 0.4409 none

The data for the algorithms were analyzed again but

this time were observed by subject experience

level. Figure 5 shows the mean accuracy scores, by

algorithm, for each of the three experience levels. As was
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expected, the advanced students did consistently better than

the intermediates and novices for all three algorithms. The

intermediates did consistently better than the novices,

except on the difficult algorithm. Here, the novices did

slightly better.

8 --

Mean

Answers -- -

Correct

4

2

Top_ : Advanced

: Intormod.

8oI._ : Novices

6.05

5.06 _ 3 18

3.42

2.43

I I I

3.00

2.77

2.67

Easy Moderale Dilficull

Algorithm

Figure 5. Mean Accuracy (Number Answers Correct),

by Algorithm and Experience Level.

z
w

With the exception of the novice group, for all

levels the desired trend was apparent: the easy algorithm

resulted in better accuracy scores than the moderate, which

had better scores than the difficult algorithm.

n

= __
w
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The only algorithm/experience level combination which

showed a significant difference (Table 6) in GRAs was that

of the easy algorithm for the novice group (p<0.0520).

A Duncan test showed that for this group, the flowchart

and PDL scores were significantly higher than the CSD

scores.

Table 6. The Probability of Accepting Ho, That the

GRAs Do Not Differ in Accuracy, by

Algorithm and Experience Level.

w

w

w

Easy
Moderate

Difficult

N=56 N=33 N=43

Novices Intermed. Advanced

0.0520 0.8454 0.1763

0.3490 0.2542 0.6235

0.4286 0.6770 0.1991

=
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Efficiency

As was done for accuracy, a PROC GLM was conducted on

efficiency of the algorithms. Mean efficiency was actually

the mean response time in minutes for all ten answers for an

algorithm. Overall mean efficiency is shown in Figure 6. As

was expected, the easy algorithm had the lowest response

times, but the moderate algorithm earned slightly higher

response times than the difficult algorithm. Like the

accuracy scores, this suggests that the moderate algorithm

was too difficult.

w
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Figure 6.
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Algorithm

Overall Mean Efficiency (Response Time in

Minutes), by Algorithm, for the Entire

Data Set.

m

N

None of the algorithms showed any difference between

GRAs in efficiency, as presented in Table 7. Figure 7 shows

response times, by GRA. Although there are visual

differences between the GRAs, there was no statistical

difference between them.

w
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25

The Probability of Accepting Ho, That the
GRAs Do Not Differ in Efficiency,by
Algorithm, for the Entire Data Set.

All Three GRA
Levels Favored

Easy 0.2108 none

Moderate 0.7634 none

Difficult 0.8994 none

J

m

w

Figure 7.

20--
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18 5R __ 1

4

CSD gc PDL
Easy

Modorale

Oifficull

GRA

Overall Mean Efficiency (Response Time

in Minutes), by GRA and Algorithm,

for the Entire Data Set.

The response times by experience level were revealing,

as shown in Figure 8. The advanced subjects consistently
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took a longer time to respond for all three algorithms than

did the novice or intermediate groups. This paid off, as

their accuracy scores were higher (see Figure 5). This

trend changed for the moderate algorithm where the novices

spent more time than the intermediates in responding to the

answers but their scores were lower. So, for the novice and

intermediate groups, greater response time did not

necessarily equal better accuracy; experience and

familiarity with the algorithm was also needed for the

accuracy to improve.

i

q

20--

Response

Times

(Minules)

23 19

20.56 _'--_'ig 56
19 5g

15.26

I ( t
Top I : Advanced

: #n(ermod

BotI : Nov_es

Easy Moderate Difficull

Algorithm

Figure 8. Mean Efficiency (Response Times in

Minutes), by Algorithm and Experience

Level.
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The Probability of Accepting Ho, That the

GRAs Do Not Differ in Efficiency, by

Algorithm and Experience Level.

N=56 N=33 N=43

Novices Intermediates Advanced

Easy 0.0364 0.8478 0.8341
Moderate 0.1336 0.3124 0.7879

Difficult 0.5078 0.2717 0.8848

The Relationship of Accuracy

or Efficiency to Experience

Table 9. Means of Subject GPA and Experience (in

Months) by Experience Level.

_ovice Intermed. Advanced

GPA 2.97 3.00 3.17

CSD Exper. 0.04 1.48 7.29

FC Exper. 7.84 17.48 27.69

PDL Exper. 6.09 17.00 34.14

Pascal Exper° 4.13 21.82 31.00

Table 9 summarizes subject background, based upon

experience level; this information was obtained from the

subject prior to taking the test. GRA and Pascal experience

are measured by months of continuous use. As shown, there

is a consistent upward trend of experience and GPA (grade

point average) from the novices to the advanced students.

Intermediates have about i0 to 17 more months of experience
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than the novices, while the advanced have i0 to 17 more than

the intermediates. Also noteworthy is the knowledge of the

CSD relative to knowledge of the other GRAs and Pascal; the

CSD is relatively unknown. This information, though basic,

will help determine the extent by which experience and GPA

affects accuracy and efficiency.

A correlation was done on the data to determine if

there existed a relationship between accuracy or efficiency

scores and subject experience in using the GRAs and Pascal

and subject grade point average (GPA). There was concern

that scores would reflect a bias for the flowchart or PDL,

since those two representations are so heavily used in

Auburn's computer science curricula.

According to Shavelson (1988), a correlation above

0.1946 is significant for a sample size of 132. As is shown

in Table i0, there were many strong correlations in the

data. Increased response times correlated with high

accuracy scores, which substantiates previous findings, that

in most cases, the longer a student spent on a question, the

higher the score. High accuracy scores related strongly to

a high GPA, PDL experience, and Pascal experience. High

accuracy scores did not relate to flowchart or CSD

experience.

Increased response times (efficiency) correlated with

greater flowchart experience, so the more a student knew the

flowchart, the slower his response times were likely to be.
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Efficiency was not affected by student GPA or PDL, CSD, and

Pascal experience.

There was a strong correlation between flowchart, PDL,

CSD, and Pascal experience. PDL and the CSD are very

similar in nature. Both were used with Pascal code in this

test, which suggests the close relationship between the

three. Also, many Auburn students learn the flowchart when

they learn either PDL, Pascal, or the CSD. GPA was not

affected by GRA experience.

An interesting phenomenon was the role the prologue

played in the evaluation. The prologue was the first

notation summary the subject saw, the aim being to

familiarize him with the notation so he was more successful

during the comprehension test. As shown, 'prolog' was

negatively correlated with accuracy and close to being

positively correlated with high response times. This means

that the longer a subject spent reading the summary, the

worse the accuracy scores and the longer the response times.

The main question was answered by this correlation: the

fact that bias was a factor in the study, at least with PDL

and the flowchart. The more a student knew PDL or the

flowchart, the more this effected his response time or

responses. More PDL knowledge lead to better accuracy

scores, while more flowchart knowledge lead to longer

response times and therefore less efficiency.
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Table i0. Pearson Correlation Coefficients Showing

the Relationship Between Accuracy or

Efficiency and Subject Experience.

FC

Effic. GPA Exp.

.3287* .1821

.0303 .2036*

-.0412

Acc.

Eff.

GPA

FC Exp.

PDL Exp.

CSD Exp.

Pas Exp.

.3114"

PDL CSD Pascal Prolog

Exp. Exp. Exp. Exp__
.3198, .1023 .4143, -.2232*

.0774 .1700 .0829 .1924

.1082 -.0196 .0443 -.0028

.6224* .4307*.4944* -.0825

.3571,.6283- -.2252*

.2892* -.0497

-.1686

(* indicates a significant correlation)

The Results of the Preference Survey

There were two questions which needed to be answered by

. q

the preference survey: (i) which GRA did the students prefer

as a whole and (2) which GRA did each experience level

prefer?

It was found that there was strong GRA preference; very

few questions yielded no preference at all. Table ii shows

the mean preference scores for each GRA, the tail

probability (from a PROC GLM) indicating if a preference was

shown or not, and what the Duncan test revealed. Most of

the i0 questions resulted in strong differences with the

exception of overall readability (question 4) and how well

the GRA shows sequence (question i). Question 3 resulted in

a borderline value (p<0.0904) which picked up a difference

in the Duncan test, favoring PDL and the CSD. Looking at

the score, overall preference seemed to be for the PDL; this
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was verified by the result of question i0. It is noteworthy

that the CSD ranked so highly, although it was the least

known of the three notations.

Table II. Overall Preference, by Task, for the Entire Data

Set. (I= Least Useful, 5 = Most Useful).

t
w

w

Tail GRA

Task CSD FC PDL Prob. Favored

1 4.49 4.28 4.44 0.3386 none

2 3.40 4.34 3.98 0.0001 FC

3 3.84 3.68 4.07 0.0904 none

4 4.07 4.17 4.13 0.8258 none

5 3.40 4.07 4.00 0.0001 FC,PDL

6 3.33 3.11 4.24 0.0001 PDL

7 3.73 3.05 3.79 0.0001 CSD, PDL

8 3.43 3.35 4.05 0.0012 PDL

9 3.59 3.93 3.43 0.0165 FC,CSD

i0 3.32 3.50 4.00 0.0022 PDL

Where:

1 = How well GRA shows sequence

2= How well GRA shows selection

3= How well GRA shows iteration

4= Overall readability

5= Ease of coding from GRA specifications

6= Ease of manual use of GRA

7= Presentation of source code of GRA by prettyprinter

8= Use of GRA in CASE editor

9= How GRA aids comprehension in an automated

instrument

i0= Overall preference

Table 12 shows a similar analysis by experience level.

Although the CSD resulted in better efficiency among

novices, they had a strong preference for the flowchart and

PDL. The intermediates, who knew the CSD best of all three
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levels, were more undecided about GRA preference. Most of

their tail probabilities did not reveal a difference; when

they did, all three GRAs were preferred for one of the tasks

each. The advanced subjects liked the CSD and PDL most of

all, which is interesting since they had the greatest

flowchart experience.

It was expected that preference for a GRA would relate

to experience with that GRA, but this bias did not pervade

the study. Correlations between GRA preference and

experience were weak. The tail probabilities were: p<-0.0444

for PDL preference and PDL experience, p<0.0742 for CSD

preference and CSD experience, and p<O.lO00 for flowchart

preference and flowchart experience. Preference then had

little to do with past experience, so familiarity with PDL,

the CSD, or the flowchart did not bias the preference

results. It should be added that these correlations looked

at the overall sample of subjects and not at each experience

level.

n

m

m
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Table 12.
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Preference, by Task, for Each Experience

Level. (i= Least Useful, 5= Most Useful).

r_

u

w

zz

w

Tail GRA

Task CSD FC PDL Prob. Favored

N

O

V

I

C

E

S

1 4.63 4.57 4.63 0.9389 none

2 3.40 4.20 4.27 0.0077 PDL, FC

3 3.40 3.63 4.30 0.0166 PDL

4 3.73 4.23 4.30 0.0744 none

5 3.17 4.00 4.03 0.0049 PDL, FC

6 3.30 3.53 4.27 0.0042 PDL

7 3.33 3.30 3.83 0.1661 none

8 3.10 3.70 4.00 0.0348 PDL, FC

9 3.23 4.00 3.70 0.0390 FC,PDL

i0 2,87 3.60 4.27 0.0002 PDL

I 1

N 2

T 3

E 4

R 5

M 6

E 7

D 8

• -9

I0

1

A 2

D 3

V 4

A 5

N 6

C 7

E 8

D 9

i0

Where :

4.40 3.80 4.20 0.2922 none

3.40 4.60 3.53 0.0116 FC

4.20 3.67 3.87 0.4924 none

4.20 3.87 3.80 0.5922 none

3.40 4.13 3.80 0.1812 none

3.73 2.60 4.27 0.0010 PDL, CSD

3.87 3.07 3.67 0.2491 none

3.73 2.93 3.93 0.1253 none

3.53 3.80 3.00 0.1266 none

3.60 3.67 3.53 0.9632 none

4.41 4.24 4.38 0.7367 none

3.41 4.35 3.92 0.0005 FC, PDL

4.05 3.73 3.97 0.3526 none

4.29 4.24 4.14 0.7509 none

3.59 4.11 4.05 0.0854 none

3.19 2.97 4.21 0.0001 PDL

4.00 2.84 3.81 0.0001 CSD,PDL

3.57 3.24 4.14 0.0102 PDL, CSD

3.89 3.92 3.38 0.0687 none

3.57 3.35 3.97 0.1071 none

I= How well GRA shows sequence

2 = How well GRA shows selection

3= How well GRa shows iteration

4= Overall readability

5 = Ease of coding from GRA specifications
6= Ease of manual use of GRA

7= Presentation of GRA by prettyprinter

8= Use of GRA in CASE editor

9= How GRA aids comprehension automated instrument

i0= Overall preference

w
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V. CONCLUSIONS AND FUTURE DIRECTIONS

Summary of Results

Results from the entire data set of 132 observations

showed no evidence to believe that the three notations

(flowchart, CSD, and PDL) differed from each other with

respect to accuracy or efficiency. This changed, however,

when subject experience level and algorithm difficulty was

observed; as an example, for the whole data set, accuracy

scores were higher with the flowchart and PDL, but only for

the easy algorithm. There were also strong preferences

within each subject experience level.

The advanced students made higher accuracy scores with

the flowchart and PDL, although none of the three algorithms

alone contributed to this difference; efficiency was

equally good for all three GRAs. The advanced students

preferred PDL for (i) selection, (2) manual use, (3) use in

a prettyprinter, and (4) use in a CASE editor. They

preferred the CSD for (I) use in a prettyprinter and (2) use

in a CASE editor. The flowchart was preferred for showing

selection. Thus, for the advanced group, three conclusions

can be drawn: (I) the PDL and flowchart were the most

34
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comprehensible notations overall, (2) none of the notations

was the most efficient, and (3) PDL was the preferred

notation.

The intermediate subject data showed a certain

blandness. Accuracy and efficiency were not affected by any

of the notations, and the preference data showed little

preference: they preferred the CSD and PDL for manual use

and the flowchart to show selection. So, for the

intermediates, there was no strong pull for or against

either notation for accuracy, efficiency, or preference.

Accuracy scores for the novices showed no differences

in the notations, except for the easy algorithm; the

flowchart and PDL improved scores. The most dramatic

evidence was that the CSD improved novice efficiency,

particularly for simpler algorithms. This contrasts with

novice preference; they preferred the PDL overall. In

particular, they rated it best for (i) showing selection,

(2) showing iteration, (3) when coding from PDL

specifications, (4) manual use, (5) use in a CASE editor,

(6) use in an automated tool, and (7) overall. The novices

liked the flowchart for (i) showing selection, (2) used in a

CASE editor, (3) when coding from flowchart specifications,

and (4) use in an automated tool. Amazingly, the novices

did not prefer the CSD for any tasks. Thus, for the

novices, three conclusions can be drawn: (i) the CSD was the

most efficient notation, (2) the flowchart and PDL were the
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most accurate notations, but only for easy algorithms, and

(3) PDL was the most preferred notation.

The intermediates did consistently better than the

novices for all algorithms, except the difficult one. This

is curious since most of the novices had very little

experience with the use of pointers, a prominent feature in

the difficult algorithm. Also, the intermediate subjects

spent more time than the novices responding to the difficult

algorithm. One can draw two conclusions: (i) the

intermediates had forgotten how to use pointers or (2) the

novices were better at quessing the answers than the

intermediates for this algorithm.

Means of experience and GPA showed a consistent trend:

the advanced subjects had I0 to 17 months more of experience

than the intermediates, while the intermediates had i0 to 17

more months than the novices. The advanced students also

had higher GPAs than did the intermediates, while the

intermediates had higher GPAs than the novices.

Correlations showed that accuracy scores were affected

by PDL experience, so bias towards PDL was a factor in this

study. Thus, the better scores shown by the advanced PDL

group were probably enhanced by their PDL experience. This

is plausible, since this group had the most experience with

PDL. It is interesting that flowchart experience did not

bias accuracy scores. Perhaps the higher accuracy scores
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for the flowchart were attributed more to the subject's

knowledge of PDL or Pascal.

High accuracy scores related strongly to a high GPA and

Pascal experience. This conclusion is straightforward,

since Pascal knowledge was a prerequisite to participating

in this study, and the more one knew Pascal, the easier the

algorithms were to understand. Students with high GPAs

would score well in accuracy, because the skill required to

understand this test are the same skills required in many of

their courses.

There was a strong correlation between GRA experience

and Pascal experience, which parallels the fact that

students at AubUrn learn to use PDL or flowchart along with

Pascal. As to preference, notation experience did not seem

to affect a subject's preference, so there was not a problem

of bias in the preference survey. As an example, the

intermediates showed little preference for the CSD but, of

the three groups, had the most recent experience with its

use.

The advanced students had the highest response times

(which equals low efficiency) of the three levels, which

improved their accuracy scores. In general, for all the

levels, longer response times equalled greater accuracy,

except for the medium algorithm with the novices and the

difficult algorithm for the intermediates. Also, low

efficiency correlated with greater flowchart experience. For
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some reason, though flowchart experience did not affect

accuracy scores, it did cause higher response times.

Perhaps this is true because the flowchart is further from

being like code than PDL or the CSD. One can only speculate

the cause.

As to the algorithms used in the instruments, the

moderate one was too difficult; accuracy scores were as low

and response times as high as that of the difficult

algorithm. This algorithm implemented a stack to find the

way out of a two-dimensional maze. One can only guess the

cause of the low scores. Perhaps the notion of a stack to

keep track of possible moves was too foreign an idea to

subjects.

Implications of the Results

With regards to accuracy, the PDL and flowchart were

favored, particularly for advanced subjects (although no one

algorithm contributed to the difference) and for novices

when the algorithm was easy; other than this, there was no

difference in the notations. With regards to efficiency,

the CSD was favorable for novices when the algorithm was

easy.

In retrospect, it is not surprising that PDL was the

most accurate of the notations. First of all, there was

bias towards PDL in the data; the subjects had as much PDL

experience as flowchart and Pascal experience (in the
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advanced group, they had more PDL experience) and, since PDL

knowledge correlated with high accuracy, better scores

resulted. Secondly, PDL is very much like code. These

students are accustomed to looking at code, modifying from

it and debugging it. There was a high correlation between

Pascal experience and PDL experience. Thus, it follows that

the notation which looks most like code would also be the

most accurate.

It was a surprise that the flowchart resulted in high

accuracy scores for advanced subjects. These scores were

not affected by flowchart experience among subjects;

however, flowchart experience did correlate with PDL and

Pascal experience. Pascal knowledge enhanced accuracy

scores; perhaps the flowchart did, too, because Pascal can

be translated easily into the flowchart.

Noteworthy is the fact that, despite the experience of

some subjects with the CSD in their software engineering

courses, the CSD was relatively unknown. It is believed

that this factor, unfamiliarity, may have accounted for the

favorability towards the flowchart and PDL. The subjects

simply had more experience with these two notations, and a

five-minute summary of the CSD during the test could not

compensate for months of use and familiarity with them.

Despite this handicap, the CSD still did well in

expediting novice understanding and shows evidence of being

a notation which should be used in education of novices.
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Even though PDL and the flowchart may increase

understanding, the graphical and textual nature of the CSD

made understanding faster and more efficient for novices.

These factors should be considered when choosing a GRA to

use in novice programming classes. This may also have

implications for users of fourth generation languages,

especially when communicating with non-computer

professionals.

Although the advanced group favored the flowchart and

PDL in accuracy, no single algorithm contributed to this

difference. There was evidence that, overall, the

effectiveness of the notations separated for the easy

algorithm and failed to show a difference for the more

difficult algorithms. It could well be that in the more

complex algorithms, the subjects, particularly the novices,

ignored the graphical part of the notation and concentrated

more on the text, the Pascal-like code. This supports a

conjecture that the notation which most resembles code is

the one which is used.

Subjects in this study were accustomed to looking at

code, not at GRAs. They create, modify, and debug by

looking at the code itself, not a graphical representation

of the program. Perhaps the results would have been more

definitive had the subjects been accustomed to programs

output on a flowchart, CSD, or PDL prettyprinter, or had

used the notations extensively as design tools (where the
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GRA is developed first, then converted to code, not the

other way around, which is so often the case). It was not

the case that these subjects had this kind of experience,

however, and there is evidence to believe that the graphics

were important when the task was easy, but when the task

became more complex, the graphics were abandoned for that

which the subject knew best: the code itself. This could

have been an underlying behavior in the novices and should

be looked into further in future research.

Preferences were definitive; PDL was preferred over the

graphical representations. Again, the subjects seemed to

favor that which is most like code itself. The other two

should not be ignored, however, as the graphical notations

were preferred for manual use and in automated tools.

Future Directions

The question of usefulness of GRAs is an important one

since so many CASE tools are being developed which utilize

GRAs and since GRAs are being implemented in program

documentation as enhancements to understanding during the

software maintenance phase.

Usefulness, as was demonstrated, relies very heavily

upon user experience. The actual determination of

experience level is probably quite complex. A subject

claiming to have 5 months of flowchart experience could

actually have had one month of design experience with the
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flowchart and four months implementation experience: coding,

debugging, and testing. This is especially true with

college students who work on relatively small programs and

find that they can create a program without a design. The

type of experience a programmer has is as important as the

length of his experience and should be a consideration in

studies such as this.

A programmer/analyst will use that with which he is

most familiar. Future GRA studies should bear this in mind.

Experimental groups need to be set up months in advance of

testing. Subjects need to be selected by experience level,

then well-trained in a single notation and provided a rich

environment in which to use it. This should be done months

prior to the test. It is important that the subjects can

'think' in the GRA before the test. Subjects which have

experience in a GRA would be divided into three groups, so

only one-third of the GRA group actually is tested in that

notation. An evaluation such as this might reveal GRA

differences. Also, the effects of using GRAs in large

programs rather than "textbook programs", needs to be

evaluated. In particular, future empirical studies should

focus on the robust interactive environment which

characterizes present and future CASE tools.

It is hoped that human-factors research (and GRA

research) is continued. The possibilities are limitless and,

as the relationship between man and machine gets closer, the
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implications become more important. However, evaluations of

this kind are tricky and require care in selecting the

proper human subjects and care in putting together the

testing instruments. It is sincerely hoped that, if nothing

else, this thesis has spawned within the reader new ideas

for evaluating programmer behavior and an insight into how

to accomplish this fascinating and ever-changing task.
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CASE '89 REPORT
REVERSE ENGINEERING AND MAINTENANCE

James H. Cross II

Auburn University

The goals, approaches, issues, and research areas identified and discussed
during the reverse engineering and maintenance sessions held at the Third
International Workshop on Computer-Aided Software Engineering, July 17-21, 1989,
London, UK (CASE '89) are summarized below. Although software maintenance is
an important topic by its own merit, it was considered a subtopic to the reverse
engineering of software at this workshop. Thus the ideas presented here are focused
on reverse engineering.

An attempt was made to clarify several closely related terms: reverse
engineering, re-engineering, restructuring, and reuse.

Reverse engineering is the process of extracting design artifacts and building or
synthesizing abstractions which are less implementation dependent. In
general, reverse engineering may be considered the front-end to one or more
of the following activities.

Re-engineering is the process of recasting software into another form which
eventually results in an executable product. This normally includes
modifications with respect to new requirements not met by the original
product.

Re-structun'ng is the process of altering code to attain improved structure in
the traditional sense. This is usually done as a form of preventative
maintenance and does not normally include major modifications with respect
to new requirements.

Re-use is the process of identifying, cataloging, and retrieving software
components for reuse in another, usually larger, software component.

Re-documentation may be considered a weaker form of reverse engineer!ng
and normally connotes a predominantly manual approach to recovering
previously existing documentation. Whereas, reverse engineering may include
abstractions or views of the software not previously available.

GOALS OF REVERSE ENGINEERING

The primary purpose of reverse engineering a software system is to increase
the overall comprehensibility of the system. This is reflected in the numerous goals
identified by workshop participants as follows:

(1) to develop methods to deal with the shear volume and complexity of the
software systems

L_
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(2) to generate alternative representations (e.g., complementing graphical
representations such as data flow diagrams, structure charts, and control flow
diagrams)

(3) to develop automated and/or semi-automated tools and techniques for the
recovery of lost information

(4) to synthesize extracted information into higher levels of abstraction

(5) to provide information as needed in the form of appropriate levels of
abstraction for different categories of users of reverse engineering
technologies

(6) to provide a basis for re-engineering and/or re-structuring of software
products

(7) to facilitate the identification of software components for re-use

---z

--4

APPROACHES USED FOR REVERSE ENGINEERING

Many approaches which address one or more of the above goals were
identified by workshop participants. These are listed below.

(1) Code scanning/parsing - This tends to be the Tffont-end activity to many of
other approaches that follow.

(2) System or command level scanning/parsing - This includes analyzing
components such as make files.

(3)

(4)

(5)

(6)

(7)

(8)

Analysis of program structure - Included here is the collection of metrics such
as levels of hierarchy, levels of complexity with respect to control constructs
(especially for the purpose of re-structuring), and cohesion and coupling
among modules.

Analysis of data structure - Here the emphasis may be on the construction or
reconstruction of a data dictionary (including scoping information and
aliases), the identification of data dependency relationships, or front-end for
re-structuring data to increase data abstraction.

Abstraction of data - This approach is concerned with the synthesis of more
abstract or higher level data structures from existing data structures. These
may or may not have been identified in the original design.

Abstraction of design - Here the focus is on synthesis of existing design
artifacts (perhaps the source code itself) into a more independent and usually
higher level design representation.

Design recovery - Design recovery is closely related to abstraction of design
but may emphasize the reconstruction of pre-existing design artifacts.

Domain analysis - The domain of input values, which in turn defines the range
of output values, is a candidate for analysis with respect to reverse
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(9)

(10)

(11)

(12)

(13)

engineering of requirements specifications. For example, a software system
can be totally defined/specified by enumerating all input/output poss_ilities.

Language translation - A weak form of reverse engineering is the translation
software from one language to another language at the same or different
level.

Presentation of other forms of representation - This is related to the language
translation approach described above but includes graphical representations
in the form of alternative or complementing views as well abstracted views of
the software.

Program optimization - The process of program optimization may include
automated, semi-automated, and manual elements of reverse engineering.

Identification of reusable components - This provides a basis for leveraging
existing software into new products.

Identification of misused items This approach to reverse engineering
emphasizes the a corrective or preventative approach to re-engineering.

w

ISSUES

Numerous issues were identified that must be addressed in order to achieve

the goals outlined above. Many are obvious while others are much more subtle.
They are as follows:

(1) Reverse engineering models - Models that capture the nature of the reverse
engineering process and methodologies that utilize the models are lacking..
For example, elements to include in these model (i.e., what to capture ancl
analyze) must be addressed.

(2) Abstraction/summarization without domain knowledge - This is perhaps the
most important and perplexing issue facing reverse engineering researchers.
The fact that the code has lost much of the original real-world requirements
information probably means reverse engineering cannot be a fully-automated
process.

(3) Inclusion of concepts from run-time measurement - While reverse
engineering is not normally considered an activity related run-time, some of
the concepts from fields such as simulation may be applicable.

(4) Conceptual understanding of software is a psychological process - This is an
extremely important issue which is overlooked by many software researchers.
However, software psychology is an emerging area that will benefit efforts in
reverse engineering. For example, empirical studies are needed to address
concepts such as cross-level abstraction versus utility at the same level.

Understandability of re-structured code - Although re-structured code may be
better according to some pre-defined metric, experience indicates that the re-
structured code may, in fact, be less understandable to those who had been
most familiar with it..
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(5)

(6)

Vendor participation - Most CASE vendors appear not to be actively
p.ursuing reverse engineering. However, the research efforts described in the
literature may be a precursor to vendor research and development.

Legal definition - An important issue with potentially far-reaching
ramifications is what can and cannot be reverse engineered from a legal
perspective (e.g., reverse engineering a product to recover/steal the design
from a competitor). Much may depend on the ultimate capability of reverse
engineering technology.

RESEARCH IN PROGRESS

Several reverse engineering projects currently in progress were cited at the
workshop. These are representative of state-of-the-art efforts in the field.

(1) Auburn University - GRASP/Ada project is focused on the generation of
graphical representations at various levels of abstraction (e.g., procedural,
architectural and system) from Ada source code.

(2)

(3)

ESPRIT - REDO is focused on the restructuring of data.

ESPRIT - PRACTITIONER is focused on pragmatic support for re-use of
concepts from existing software.

(4) MCC - A large reverse engineering effort is underway which is focused on
design recovery.

w

w

RESEARCH NEEDED

While many of the issues descn'bed above are considered areas for research,
workshop participants selected the following as being of special interest.

(1)

(2)

(3)

(4)

Deriving abstraction - This is a general term which encompasses much of the
essence of reverse engineering.

Design to requirements backtracking including the capture of decisions - The
future success of reverse engineering may rely on improved forward
engineering CASE tools which explicitly capture requirements/design
relationships when they are initially created.

:E

Configuration management ' Reverse engineering may make it feasible to
_iass back changes to design documents during the maintenance phase of the

fe cycle. This would be of special significance in large, long-life systems
where frequent turnover of maintenance personnel is experienced.

Controlling complexity of I/O amon_g reverse engineering tools - Currently,
many experimental reverse engineering tools are under development. Since
most of these are special purpose, little has been done with respect to
standardization of tool interfaces or an underlying data base.
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(5)

(6)

(7)

Automatic layout of graphical representations - A more immediate research
problem concerns the presentation of extracted graphical representations.
For example, arc routing for data flow diagrams can seriously detract from the
readability of data flow diagrams if not done well.

Nature of re-usable artifacts - The support of software re-use is an important
impetus for reverse engineering. However, a key to re-use of artifacts lies in
determining and controlling their stability.

Re-usable code versus understanding code - The level of re-use determines
whether or not code must be understood as a prerequisite to re-use. Modules
that reach the status of'"ouilt-in" functions/procedures would rarely, if ever, be
read. However, a module that is seldom used or of which only a
subcomponent is required would presumably have to be read, understood,
and tested in order to establish a suitable level of confidence.

CONCLUDING REMARKS

The CASE '89 workshop was extremely successful in its mission of bringing
together practitioners, vendors, and researchers in various areas of computer-aided

software engineering. It provided an opportunity for the participants to share their
ideas and experiences and, as a result, assess the current state-of-the-art of CASE
tools.
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